Human Genome Sequencing Center Clinical Lab
The HGSC Clinical Laboratory (HGSC-CL) is the CAP/CLIA certified molecular diagnostic laboratory operating within the Human Genome Sequencing Center at Baylor College of Medicine.
With a commitment to improving health care through genomic testing, HGSC-CL offers clinical testing services in support of large-scale clinical sequencing efforts.
Uniquely comprehensive Pan-Cancer Atlas provides essential resource
A collection of 27 papers from The Cancer Genome Atlas (TCGA) consortium has been published reporting on the integrated project to analyze all 33 cancer types and to classify mutations and specific pathways. Many of the papers feature significant contributions from Baylor College of Medicine and its Human Genome Sequencing Center researchers. The findings from the 11,000 patient cohort data appear in Cell publications.
Hybrid computational strategy for scalable whole genome data analysis
In a study published in BMC Bioinformatics, researchers from Baylor College of Medicine’s Human Genome Sequencing Center, along with Oak Ridge National Laboratory, DNAnexus and the Human Genetics Center at the University of Texas Health Science Center, have developed a novel hybrid computational strategy to address the growing need for scalable, cost effective and real time variant calling of whole genome sequencing data.
This new strategy has proven successful in analyzing an unprecedented set of 5,000 samples, which constitute a critical part for the international consortia efforts known as The Cohorts for Heart and Aging Research in Genomic Epidemiology, or CHARGE.
An Open Access Pilot Freely Sharing Cancer Genomic Data From Participants in Texas
In a pilot Open Access (OA) project from the CPRIT-funded Texas Cancer Research Biobank (TCRB), many Texas cancer patients were willing to openly share genomic data from tumor and normal matched pair specimens. For the first time, genetic data from seven human cancer cases with matched normal are freely available without requirement for data use agreements nor any major restriction except that end users cannot attempt to re-identify the participants.
The TCRB was created to bridge the gap between doctors and scientific researchers to improve the prevention, diagnosis and treatment of cancer.
› Access data
› Read data descriptor in Scientific Data journal
Assessing structural variation in a personal genome—towards a human reference diploid genome
In a paper published in BMC Genomics, a team led by scientists from Baylor College of Medicine’s Human Genome Sequencing Center present Parliament, a structural variant (SV) calling pipeline that brings together multiple data types and SV detection methods to improve the characterization of these larger variants.
BCM-HGSC in the News
Knowing your risk factors is key when it comes to preventing heart attack and stroke, and now researchers at Baylor College of Medicine have found that testing a specific type of triglyceride may be a better indicator for predicting risk of cardiovascular disease and stroke compared to just traditional risk factors.
Researchers using data from the long-term, ongoing Atherosclerosis Risk in Communities (ARIC) study found that the levels of lipoprotein triglycerides (LDL-TG) predicted not only heart attack but also stroke. They also observed that a genetic variant of APOE, known as APOE2, was found to have the strongest association with both RLP-C and LDL-TG. It was associated with higher RLP-C but lower levels of LDL-TG.
Sequencing for ARIC was carried out at the Baylor College of Medicine Human Genome Sequencing Center.
Dr. Fritz Sedlazeck of the Baylor College of Medicine Human Genome Sequencing Center and Dr. Arne Nolte of the Institute for Biology and Environmental Sciences at the University of Oldenburg, Germany, have been awarded the 2018 Plant and Animal SMRT® Grant. This grant provides the researchers access to the PacBio Sequel System at GENEWIZ, as well as the materials needed and bioinformatics support to conduct comparative genomic sequencing on the newly discovered European cavefish.
Scientists at Baylor College of Medicine and Radboud University Medical Center in the Netherlands have discovered that the antennae-like structures on light-sensing neurons, called photoreceptors, have a unique feature not observed in the ‘antennae’ or cilia of other types of cells. The study, published in the Journal of Cell Biology, reveals that this novel functional zone plays a structural role that is essential for the function of the photoreceptors and also helps explain why mutations on certain cilia proteins, although present throughout the body, only affect cilia on photoreceptors, causing non-syndromic blindness.
“Practically all cells in the body have a single cilium called the primary cilium that seems to allow cells to sense their environment. The primary cilia on photoreceptors, for instance, specialize in sensing light,” said first author Rachayata Dharmat, graduate student of molecular and human genetics in the lab of Dr. Rui Chen.
“Our lab focuses on understanding the molecular mechanisms and gene variants underlying human retinal disease,” said Chen, professor of molecular and human genetics and in the Human Genome Sequencing Center as well as member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine.
Dr. Stephen Richards, associate professor at the Baylor Collge of Medicine Human Genome Sequencing Center, joined Craig Cohen on Houston Public Media's "Houston Matters" program to discuss the Earth BioGenome Project, an initative to sequence all 1.5 million eukaryote species on Earth.
"It's a big project; there's going to be a lot of data," said Richards regarding the proposed 10-year international undertaking. "We think now because the cost of sequencing has dropped so much that the overall cost to do this on planet Earth would be about the same or even less than it was to do the human genome the first time."
Researchers at the Human Genome Sequencing Center at Baylor College of Medicine have conducted a study of 20 individuals with Xia-Gibbs Syndrome, a rare condition that has symptoms of severe developmental delay, sleep apnea, delayed speech and generalized upper body weakness, and have established a registry to collect genetic and other clinical information from patients with the condition.
As discovered in 2014 by a team led by Dr. Richard Gibbs, professor and director of the Human Genome Sequencing Center at Baylor, Xia-Gibbs Syndrome is the result of new changes within the AT-Hook DNA Binding Motif Containing 1 gene (AHDC1). The new study, which appears in the American Journal of Medical Genetics, shows that the gene is more susceptible to mutations than previously known.
About Us
The BCM-HGSC, founded in 1996, is a world leader in genomics.
The fundamental interests of the BCM-HGSC are in advancing biology and genetics by improved genome technologies.
One of three large-scale sequencing centers funded by the National Institutes of Health, the BCM-HGSC's location at the heart of the Texas Medical Center provides a unique opportunity to apply the cutting edge of genome technologies in science and medicine.
Recent Publications
Related video
Achieving the Amazing: Alexis's Story
At age five, she couldn't walk. At 18, she made her college track team. Diagnosed with a rare genetic condition, Alexis Beery now receives the treatment she needs to keep moving fast.









