Chromatin conformation capture in the clinic: 4C-seq/HiC distinguishes pathogenic from neutral duplications at the GPR101 locus.

TitleChromatin conformation capture in the clinic: 4C-seq/HiC distinguishes pathogenic from neutral duplications at the GPR101 locus.
Publication TypeJournal Article
Year of Publication2024
AuthorsDaly, AF, Dunnington, LA, Rodriguez-Buritica, DF, Spiegel, E, Brancati, F, Mantovani, G, Rawal, VM, Faucz, FRueda, Hijazi, H, Caberg, J-H, Nardone, AMaria, Bengala, M, Fortugno, P, Del Sindaco, G, Ragonese, M, Gould, H, Cannavò, S, Petrossians, P, Lania, A, Lupski, JR, Beckers, A, Stratakis, CA, Levy, B, Trivellin, G, Franke, M
JournalGenome Med
Volume16
Issue1
Pagination112
Date Published2024 Sep 13
ISSN1756-994X
KeywordsChromatin, Chromosome Duplication, Chromosomes, Human, X, Female, Gene Duplication, Humans, Male, Pedigree, Receptors, G-Protein-Coupled
Abstract

BACKGROUND: X-linked acrogigantism (X-LAG; MIM: 300942) is a severe form of pituitary gigantism caused by chromosome Xq26.3 duplications involving GPR101. X-LAG-associated duplications disrupt the integrity of the topologically associating domain (TAD) containing GPR101 and lead to the formation of a neo-TAD that drives pituitary GPR101 misexpression and gigantism. As X-LAG is fully penetrant and heritable, duplications involving GPR101 identified on prenatal screening studies, like amniocentesis, can pose an interpretation challenge for medical geneticists and raise important concerns for patients and families. Therefore, providing robust information on the functional genomic impact of such duplications has important research and clinical value with respect to gene regulation and triplosensitivity traits.

METHODS: We employed 4C/HiC-seq as a clinical tool to determine the functional impact of incidentally discovered GPR101 duplications on TAD integrity in three families. After defining duplications and breakpoints around GPR101 by clinical-grade and high-density aCGH, we constructed 4C/HiC chromatin contact maps for our study population and compared them with normal and active (X-LAG) controls.

RESULTS: We showed that duplications involving GPR101 that preserved the centromeric invariant TAD boundary did not generate a pathogenic neo-TAD and that ectopic enhancers were not adopted. This allowed us to discount presumptive/suspected X-LAG diagnoses and GPR101 misexpression, obviating the need for intensive clinical follow-up.

CONCLUSIONS: This study highlights the importance of TAD boundaries and chromatin interactions in determining the functional impact of copy number variants and provides proof-of-concept for using 4C/HiC-seq as a clinical tool to acquire crucial information for genetic counseling and to support clinical decision-making in cases of suspected TADopathies.

DOI10.1186/s13073-024-01378-5
Alternate JournalGenome Med
PubMed ID39272130
PubMed Central IDPMC11396275
Grant List100010434 / / 'la Caixa' Foundation /
fellowship code LCF/BQ/PR22/11920006 / / 'la Caixa' Foundation /
ZIA HD008920 / ImNIH / Intramural NIH HHS / United States
GGP20130 / / Fondazione Telethon /
R35NS105078 / / National Institute of Health (NINDS) /
PRIN 2022 / / Ministero dell'Istruzione, dell'Università e della Ricerca /
Z1A HD008920 / / Eunice Kennedy Shriver National Institute of Child Health and Human Development /
PRIN PNRR 2022 / / Ministero dell'Istruzione, dell'Università e della Ricerca /
Ricerca Corrente" / / Ministero della Salute /
2018/20 / / Centre Hospitalier Universitaire de Liège /
T3-AN-14 "LifeMap" / / Ministero della Salute /
R35 NS105078 / NS / NINDS NIH HHS / United States

Similar Publications