Title | A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | Bajaj, L, Sharma, J, di Ronza, A, Zhang, P, Eblimit, A, Pal, R, Roman, D, Collette, JR, Booth, C, Chang, KT, Sifers, RN, Jung, SY, Weimer, JM, Chen, R, Schekman, RW, Sardiello, M |
Journal | J Clin Invest |
Volume | 130 |
Issue | 8 |
Pagination | 4118-4132 |
Date Published | 2020 Aug 03 |
ISSN | 1558-8238 |
Keywords | Animals, Endoplasmic Reticulum, Golgi Apparatus, Lysosomes, Membrane Proteins, Mice, Mice, Knockout, Multiprotein Complexes, Neuronal Ceroid-Lipofuscinoses, Protein Transport |
Abstract | Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and transferred to the Golgi complex by interaction with the Batten disease protein CLN8 (ceroid lipofuscinosis, neuronal, 8). Here we investigated the relationship of this pathway with CLN6, an ER-associated protein of unknown function that is defective in a different Batten disease subtype. Experiments focused on protein interaction and trafficking identified CLN6 as an obligate component of a CLN6-CLN8 complex (herein referred to as EGRESS: ER-to-Golgi relaying of enzymes of the lysosomal system), which recruits lysosomal enzymes at the ER to promote their Golgi transfer. Mutagenesis experiments showed that the second luminal loop of CLN6 is required for the interaction of CLN6 with the enzymes but dispensable for interaction with CLN8. In vitro and in vivo studies showed that CLN6 deficiency results in inefficient ER export of lysosomal enzymes and diminished levels of the enzymes at the lysosome. Mice lacking both CLN6 and CLN8 did not display aggravated pathology compared with the single deficiencies, indicating that the EGRESS complex works as a functional unit. These results identify CLN6 and the EGRESS complex as key players in lysosome biogenesis and shed light on the molecular etiology of Batten disease caused by defects in CLN6. |
DOI | 10.1172/JCI130955 |
Alternate Journal | J Clin Invest |
PubMed ID | 32597833 |
PubMed Central ID | PMC7410054 |
Grant List | R01 GM127492 / GM / NIGMS NIH HHS / United States U54 HD083092 / HD / NICHD NIH HHS / United States P30 CA125123 / CA / NCI NIH HHS / United States P30 DK056338 / DK / NIDDK NIH HHS / United States R01 NS079618 / NS / NINDS NIH HHS / United States R01 NS082283 / NS / NINDS NIH HHS / United States P50 HD103555 / HD / NICHD NIH HHS / United States R56 NS079618 / NS / NINDS NIH HHS / United States |
A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer.
Similar Publications
Improved high quality sand fly assemblies enabled by ultra low input long read sequencing. Sci Data. 2024;11(1):918. | .
Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy. Nat Commun. 2024;15(1):7239. | .
Pelage variation and morphometrics of closely related Callithrix marmoset species and their hybrids. BMC Ecol Evol. 2024;24(1):122. | .