Title | Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. |
Publication Type | Journal Article |
Year of Publication | 2015 |
Authors | Dong, C, Wei, P, Jian, X, Gibbs, R, Boerwinkle, E, Wang, K, Liu, X |
Journal | Hum Mol Genet |
Volume | 24 |
Issue | 8 |
Pagination | 2125-37 |
Date Published | 2015 Apr 15 |
ISSN | 1460-2083 |
Keywords | Computational Biology, Exome, Genome, Human, Humans, Polymorphism, Single Nucleotide, Software |
Abstract | Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18 current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), 3 conservation scores (GERP++, SiPhy and PhyloP) and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest discriminative power among independent scores and ensemble scores, respectively. Moreover, to ensure unbiased performance evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele frequency. Our scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores for 87 347 044 possible variants in the whole-exome and made them publicly available through the ANNOVAR software and the dbNSFP database. |
DOI | 10.1093/hmg/ddu733 |
Alternate Journal | Hum Mol Genet |
PubMed ID | 25552646 |
PubMed Central ID | PMC4375422 |
Grant List | U54HG003273 / HG / NHGRI NIH HHS / United States R01-HL106034 / HL / NHLBI NIH HHS / United States R01 HL106034 / HL / NHLBI NIH HHS / United States R01 GM104411 / GM / NIGMS NIH HHS / United States R01 HL116720 / HL / NHLBI NIH HHS / United States R01-CA169122 / CA / NCI NIH HHS / United States R01 CA169122 / CA / NCI NIH HHS / United States R01-HL116720 / HL / NHLBI NIH HHS / United States R01-HG006465 / HG / NHGRI NIH HHS / United States RC2-HL02419 / HL / NHLBI NIH HHS / United States R01 HG006465 / HG / NHGRI NIH HHS / United States |
Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.
Similar Publications
DNA Methylation-Derived Immune Cell Proportions and Cancer Risk in Black Participants. Cancer Res Commun. 2024;4(10):2714-2723. | .
StratoMod: predicting sequencing and variant calling errors with interpretable machine learning. Commun Biol. 2024;7(1):1316. | .
Identification of allele-specific KIV-2 repeats and impact on Lp(a) measurements for cardiovascular disease risk. BMC Med Genomics. 2024;17(1):255. | .