Divergent BRAF Inhibitor Resistance Mechanisms Revealed through Epigenetic Mapping.

TitleDivergent BRAF Inhibitor Resistance Mechanisms Revealed through Epigenetic Mapping.
Publication TypeJournal Article
Year of Publication2023
AuthorsKang, Y, Ji, Z, Li, H, Tsao, H
JournalJ Invest Dermatol
Date Published2023 May
KeywordsCell Line, Tumor, Drug Resistance, Neoplasm, Epigenesis, Genetic, Humans, Indoles, Melanoma, Mutation, Protein Kinase Inhibitors, Proto-Oncogene Proteins B-raf, RNA, Sulfonamides

Although tremendous progress has been made in targeted and immune-based treatments for advanced melanoma, there remains a substantial therapeutic failure rate. For patients with BRAF(V600)-mutant melanomas, resistance to BRAF inhibitors remains a significant survival hurdle. Although multiple compensatory mechanisms to bypass BRAF blockade have been discovered, the epigenetic patterns are still poorly characterized. In this report, we generated eight matched pairs of vemurafenib-sensitive/-resistant melanoma lines and subjected these to concurrent RNA-sequencing and H3K27ac chromatin immunoprecipitation sequencing analysis. Globally, we identified two classes of epigenetic profiles that correlate with resistance. Class 1 resistance involves fewer RNA expression alterations accompanied by fewer enhancer mark changes with H3K27ac. Class 2 resistance shows widespread alterations in transcription and enhancer profiles, which converge on epithelial‒mesenchymal transition and hypoxia-related pathways. We also observed significant and dynamic changes in superenhancers that underpin these transcriptomic patterns. We subsequently verified the two-class structure in pre-BRAF inhibitors and postrelapse human melanoma specimens. Our findings reveal a broad and underappreciated spectrum of epigenetic plasticity during acquired BRAF inhibitor resistance.

Alternate JournalJ Invest Dermatol
PubMed ID36529262

Similar Publications

Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14(1):5637.
Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al.. The complete sequence of a human Y chromosome. Nature. 2023;621(7978):344-354.
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, et al.. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol. 2023;29(28):4416-4432.
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Zhao N, Teles F, Lu J, Koestler DC, Beck J, Boerwinkle E, et al.. Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol. 2023;50(9):1140-1153.
Harris RA, McAllister JM, Strauss JF. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome. Int J Mol Sci. 2023;24(13).
Qian X, Srinivasan T, He J, Chen R. The Role of Ceramide in Inherited Retinal Disease Pathology. Adv Exp Med Biol. 2023;1415:303-307.
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al.. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15(705):eadf5681.