Fosmid-based physical mapping of the Histoplasma capsulatum genome.

TitleFosmid-based physical mapping of the Histoplasma capsulatum genome.
Publication TypeJournal Article
Year of Publication2004
AuthorsMagrini, V, Warren, WC, Wallis, J, Goldman, WE, Xu, J, Mardis, ER, McPherson, JD
JournalGenome Res
Date Published2004 Aug
KeywordsContig Mapping, DNA Fingerprinting, Genetic Vectors, Genome, Fungal, Genomic Library, Histoplasma, Restriction Mapping

A fosmid library representing 10-fold coverage of the Histoplasma capsulatum G217B genome was used to construct a restriction-based physical map. The data obtained from three restriction endonuclease fingerprints, generated from each clone using BamHI, HindIII, and PstI endonucleases, were combined and used in FPC for automatic and manual contig assembly builds. Concomitantly, a whole-genome shotgun (WGS) sequencing of paired-end reads from plasmids and fosmids were assembled with PCAP, providing a predicted genome size of up to 43.5 Mbp and 17% repetitive DNA. Fosmid paired-end sequences in the WGS assembly provide anchoring information to the physical map and result in joining of existing physical map contigs into 84 clusters containing 9551 fosmid clones. Here, we detail mapping the Histoplasma capsulatum genome comprehensively in fosmids, resulting in an efficient paradigm for de novo sequencing that uses a map-assisted whole genome shotgun approach.

Alternate JournalGenome Res
PubMed ID15289478
PubMed Central IDPMC509269
Grant ListR01 AI025584 / AI / NIAID NIH HHS / United States
R56 AI025584 / AI / NIAID NIH HHS / United States
AI25584 / AI / NIAID NIH HHS / United States

Similar Publications

Lu J, Zheng KQ, Bertrand RElaine, Quinlan J, Ferdous S, Srinivasan T, et al.. Gene augmentation therapy to rescue degenerative photoreceptors in a Cwc27 mutant mouse model. Exp Eye Res. 2023;234:109596.
Qian X, Liu H, Fu S, Lu J, Hung Y-T, Turner C, et al.. AAV8-Mediated Gene Therapy Rescues Retinal Degeneration Phenotype in a Tlcd3b Knockout Mouse Model. Invest Ophthalmol Vis Sci. 2022;63(3):11.
Hall CL, Kesharwani RK, Phillips NR, Planz JV, Sedlazeck FJ, Zascavage RR. Accurate profiling of forensic autosomal STRs using the Oxford Nanopore Technologies MinION device. Forensic Sci Int Genet. 2022;56:102629.
Zaneveld SAgrawal, Eblimit A, Liang Q, Bertrand R, Wu N, Liu H, et al.. Gene Therapy Rescues Retinal Degeneration in Receptor Expression-Enhancing Protein 6 Mutant Mice. Hum Gene Ther. 2019;30(3):302-315.
Zhong H, Eblimit A, Moayedi Y, Boye SL, Chiodo VA, Chen Y, et al.. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa. Gene Ther. 2015;22(8):619-27.
Doddapaneni H, Subramanian V, Fu B, Cullen D. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus. Fungal Genet Biol. 2013;55:22-31.
Zaneveld J, Wang F, Wang X, Chen R. Dawn of ocular gene therapy: implications for molecular diagnosis in retinal disease. Sci China Life Sci. 2013;56(2):125-33.
Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG, et al.. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A. 2012;109(43):17501-6.
McIntyre JC, Davis EE, Joiner A, Williams CL, Tsai I-C, Jenkins PM, et al.. Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nat Med. 2012;18(9):1423-8.
Totoki Y, Tatsuno K, Yamamoto S, Arai Y, Hosoda F, Ishikawa S, et al.. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet. 2011;43(5):464-9.