Genome-enabled insights into the biology of thrips as crop pests.

TitleGenome-enabled insights into the biology of thrips as crop pests.
Publication TypeJournal Article
Year of Publication2020
AuthorsRotenberg, D, Baumann, AA, Ben-Mahmoud, S, Christiaens, O, Dermauw, W, Ioannidis, P, Jacobs, CGC, Jentzsch, IMVargas, Oliver, JE, Poelchau, MF, Rajarapu, SPriya, Schneweis, DJ, Snoeck, S, Taning, CNT, Wei, D, Gamage, SMKWidana, Hughes, DST, Murali, SC, Bailey, ST, Bejerman, NE, Holmes, CJ, Jennings, EC, Rosendale, AJ, Rosselot, A, Hervey, K, Schneweis, BA, Cheng, S, Childers, C, Simão, FA, Dietzgen, RG, Chao, H, Dinh, H, Doddapaneni, H, Dugan, S, Han, Y, Lee, SL, Muzny, DM, Qu, J, Worley, KC, Benoit, JB, Friedrich, M, Jones, JW, Panfilio, KA, Park, Y, Robertson, HM, Smagghe, G, Ullman, DE, Van der Zee, M, Van Leeuwen, T, Veenstra, JA, Waterhouse, RM, Weirauch, MT, Werren, JH, Whitfield, AE, Zdobnov, EM, Gibbs, RA, Richards, S
JournalBMC Biol
Date Published2020 Oct 19
KeywordsAnimals, Crops, Agricultural, Feeding Behavior, Food Chain, Genome, Insect, Immunity, Innate, Life History Traits, Perception, Phylogeny, Reproduction, Thysanoptera, Transcriptome

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set.

RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta.

CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.

Alternate JournalBMC Biol
PubMed ID33070780
PubMed Central IDPMC7570057
Grant ListU54 HG003273 / HG / NHGRI NIH HHS / United States
DEB1257053 / / National Science Foundation / International
IOS1456233 / / National Science Foundation / International
DEB1654417 / / National Science Foundation / International
31003A-125350 / / Swiss NSF / International
31003A-143936 / / Swiss NSF / International
PP00P3_170664 / / Swiss NSF / International
G053815N / / Research Foundation Flanders / International
2012-68004-20166 / / National Institute of Food and Agriculture / International
2018-67013-28495 / / National Institute of Food and Agriculture / International

Similar Publications

Schlosser P, Zhang J, Liu H, Surapaneni AL, Rhee EP, Arking DE, et al.. Transcriptome- and proteome-wide association studies nominate determinants of kidney function and damage. Genome Biol. 2023;24(1):150.
Lu J, Zheng KQ, Bertrand RElaine, Quinlan J, Ferdous S, Srinivasan T, et al.. Gene augmentation therapy to rescue degenerative photoreceptors in a Cwc27 mutant mouse model. Exp Eye Res. 2023;234:109596.
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Qian X, Srinivasan T, He J, Lu J, Jin Y, Gu H, et al.. Ceramide compensation by ceramide synthases preserves retinal function and structure in a retinal dystrophy mouse model. Dis Model Mech. 2023;16(7).
Yang L, Chen X, Lee C, Shi J, Lawrence EB, Zhang L, et al.. Functional characterization of age-dependent p16 epimutation reveals biological drivers and therapeutic targets for colorectal cancer. J Exp Clin Cancer Res. 2023;42(1):113.
Shao Y, Zhou L, Li F, Zhao L, Zhang B-L, Shao F, et al.. Phylogenomic analyses provide insights into primate evolution. Science. 2023;380(6648):913-924.
Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, et al.. A global catalog of whole-genome diversity from 233 primate species. Science. 2023;380(6648):906-913.
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, et al.. The landscape of tolerated genetic variation in humans and primates. Science. 2023;380(6648):eabn8153.
Sørensen EF, Harris RA, Zhang L, Raveendran M, Kuderna LFK, Walker JA, et al.. Genome-wide coancestry reveals details of ancient and recent male-driven reticulation in baboons. Science. 2023;380(6648):eabn8153.
Weinstock JS, Gopakumar J, Burugula BBharathi, Uddin MMesbah, Jahn N, Belk JA, et al.. Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis. Nature. 2023;616(7958):755-763.