Genomes of the Hymenoptera.

TitleGenomes of the Hymenoptera.
Publication TypeJournal Article
Year of Publication2018
AuthorsBranstetter, MG, Childers, AK, Cox-Foster, D, Hopper, KR, Kapheim, KM, Toth, AL, Worley, KC
JournalCurr Opin Insect Sci
Date Published2018 02
KeywordsAnimals, Female, Genome, Insect, Haploidy, Hymenoptera, Male, Phylogeny

Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. A more comprehensive catalog of hymenopteran genomes is needed for research into the evolutionary processes underlying the expansive diversity in terms of ecology, behavior, and physiological traits within this group. Additional sequencing is needed to generate an assembly for even 0.05% of the estimated 1 million hymenopteran species, and we recommend premier level assemblies for at least 0.1% of the >150,000 named species dispersed across the order. Given the haplodiploid sex determination in Hymenoptera, haploid male sequencing will help minimize genome assembly issues to enable higher quality genome assemblies.

Alternate JournalCurr Opin Insect Sci
PubMed ID29602364
PubMed Central IDPMC5993429
Grant ListU54 HG003273 / HG / NHGRI NIH HHS / United States

Similar Publications

Schlosser P, Zhang J, Liu H, Surapaneni AL, Rhee EP, Arking DE, et al.. Transcriptome- and proteome-wide association studies nominate determinants of kidney function and damage. Genome Biol. 2023;24(1):150.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Lu J, Zheng KQ, Bertrand RElaine, Quinlan J, Ferdous S, Srinivasan T, et al.. Gene augmentation therapy to rescue degenerative photoreceptors in a Cwc27 mutant mouse model. Exp Eye Res. 2023;234:109596.
Harris RA, McAllister JM, Strauss JF. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome. Int J Mol Sci. 2023;24(13).
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Qian X, Srinivasan T, He J, Lu J, Jin Y, Gu H, et al.. Ceramide compensation by ceramide synthases preserves retinal function and structure in a retinal dystrophy mouse model. Dis Model Mech. 2023;16(7).
Sisoudiya SDushyant, Mishra P, Li H, Schraw JM, Scheurer ME, Salvi S, et al.. Identification of USP9X as a leukemia susceptibility gene. Blood Adv. 2023;7(16):4563-4575.
Yang L, Chen X, Lee C, Shi J, Lawrence EB, Zhang L, et al.. Functional characterization of age-dependent p16 epimutation reveals biological drivers and therapeutic targets for colorectal cancer. J Exp Clin Cancer Res. 2023;42(1):113.
Elbendary HM, Marafi D, Saad AK, Elhossini R, Duan R, Rafat K, et al.. Novel LSS variants in alopecia and intellectual disability syndrome: New case report and clinical spectrum of LSS-related rare disease traits. Clin Genet. 2023;104(3):344-349.
Shao Y, Zhou L, Li F, Zhao L, Zhang B-L, Shao F, et al.. Phylogenomic analyses provide insights into primate evolution. Science. 2023;380(6648):913-924.