Genomic Alterations of Adamantinomatous and Papillary Craniopharyngioma.

TitleGenomic Alterations of Adamantinomatous and Papillary Craniopharyngioma.
Publication TypeJournal Article
Year of Publication2017
AuthorsGoschzik, T, Gessi, M, Dreschmann, V, Gebhardt, U, Wang, L, Yamaguchi, S, Wheeler, DA, Lauriola, L, Lau, CC, Müller, HL, Pietsch, T
JournalJ Neuropathol Exp Neurol
Date Published2017 02 01
KeywordsAdolescent, Adult, Amino Acid Sequence, Child, Craniopharyngioma, Female, Genomics, Humans, Male, Middle Aged, Mutation, Pituitary Neoplasms, Young Adult

Craniopharyngiomas are rare histologically benign but clinically challenging neoplasms. To obtain further information on the molecular genetics and biology of craniopharyngiomas, we analyzed a cohort of 121 adamantinomatous and 16 papillary craniopharyngiomas (ACP, PCP). We extracted DNA from formalin-fixed paraffin-embedded tissue and determined mutational status of CTNNB1, BRAF, and DDX3X by Sanger sequencing, next generation panel sequencing, and pyrosequencing. Sixteen craniopharyngiomas were further analyzed by molecular inversion profiling (MIP); 76.1% of the ACP were mutated in exon 3 of CTNNB1 encoding for β-catenin and there was a trend towards a worse event-free survival in cases mutated at Thr41. Next generation panel sequencing of 26 ACP did not detect any recurrent mutations other than CTNNB1 mutations. BRAF V600E mutations were found in 94% of the PCP, but not in ACP. GISTIC analysis of MIP data showed no significant larger chromosomal aberrations but a fraction of ACP showed recurrent focal gains of chromosomal material, other cases showed loss in the chromosomal region Xq28, and a third group and the PCP had stable genomes. In conclusion, the crucial pathogenetic event appears to be WNT activation in ACP, whereas it appears to be activation of the Ras/Raf/MEK/ERK pathway by BRAF V600E mutations in PCP.

Alternate JournalJ Neuropathol Exp Neurol
PubMed ID28069929

Similar Publications

Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14(1):5637.
Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al.. The complete sequence of a human Y chromosome. Nature. 2023;621(7978):344-354.
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, et al.. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol. 2023;29(28):4416-4432.
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al.. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15(705):eadf5681.
Zhao N, Teles F, Lu J, Koestler DC, Beck J, Boerwinkle E, et al.. Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol. 2023;50(9):1140-1153.
Harris RA, McAllister JM, Strauss JF. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome. Int J Mol Sci. 2023;24(13).
Qian X, Srinivasan T, He J, Chen R. The Role of Ceramide in Inherited Retinal Disease Pathology. Adv Exp Med Biol. 2023;1415:303-307.