High-throughput multiplex sequencing to discover copy number variants in Drosophila.

TitleHigh-throughput multiplex sequencing to discover copy number variants in Drosophila.
Publication TypeJournal Article
Year of Publication2009
AuthorsDaines, B, Wang, H, Li, Y, Han, Y, Gibbs, RA, Chen, R
JournalGenetics
Volume182
Issue4
Pagination935-41
Date Published2009 Aug
ISSN1943-2631
KeywordsAnimals, DNA Copy Number Variations, Drosophila melanogaster, Genome, Insect, Methods, Sequence Analysis, DNA, Sequence Deletion
Abstract

Copy number variation (CNV) contributes in phenotypically relevant ways to the genetic variability of many organisms. Cost-effective genomewide methods for identifying copy number variation are necessary to elucidate the contribution that these structural variants make to the genomes of model organisms. We have developed a novel approach for the identification of copy number variation by next generation sequencing. As a proof of concept our method has been applied to map the deletions of three Drosophila deficiency strains. We demonstrate that low sequence coverage is sufficient for identifying and mapping large deletions at kilobase resolution, suggesting that data generated from high-throughput sequencing experiments are sufficient for simultaneously analyzing many strains. Genomic DNA from two Drosophila deficiency stocks was barcoded and sequenced in multiplex, and the breakpoints associated with each deletion were successfully identified. The approach we describe is immediately applicable to the systematic exploration of copy number variation in model organisms and humans.

DOI10.1534/genetics.109.103218
Alternate JournalGenetics
PubMed ID19528327
PubMed Central IDPMC2728881
Grant ListU54 HG003273 / HG / NHGRI NIH HHS / United States
U54HG003273 / HG / NHGRI NIH HHS / United States

Similar Publications

Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Schlosser P, Zhang J, Liu H, Surapaneni AL, Rhee EP, Arking DE, et al.. Transcriptome- and proteome-wide association studies nominate determinants of kidney function and damage. Genome Biol. 2023;24(1):150.
Lu J, Zheng KQ, Bertrand RElaine, Quinlan J, Ferdous S, Srinivasan T, et al.. Gene augmentation therapy to rescue degenerative photoreceptors in a Cwc27 mutant mouse model. Exp Eye Res. 2023;234:109596.
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Qian X, Srinivasan T, He J, Lu J, Jin Y, Gu H, et al.. Ceramide compensation by ceramide synthases preserves retinal function and structure in a retinal dystrophy mouse model. Dis Model Mech. 2023;16(7).
Yang L, Chen X, Lee C, Shi J, Lawrence EB, Zhang L, et al.. Functional characterization of age-dependent p16 epimutation reveals biological drivers and therapeutic targets for colorectal cancer. J Exp Clin Cancer Res. 2023;42(1):113.
Shao Y, Zhou L, Li F, Zhao L, Zhang B-L, Shao F, et al.. Phylogenomic analyses provide insights into primate evolution. Science. 2023;380(6648):913-924.
Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, et al.. A global catalog of whole-genome diversity from 233 primate species. Science. 2023;380(6648):906-913.
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, et al.. The landscape of tolerated genetic variation in humans and primates. Science. 2023;380(6648):eabn8153.
Sørensen EF, Harris RA, Zhang L, Raveendran M, Kuderna LFK, Walker JA, et al.. Genome-wide coancestry reveals details of ancient and recent male-driven reticulation in baboons. Science. 2023;380(6648):eabn8153.