Hsp90 modulates CAG repeat instability in human cells.

TitleHsp90 modulates CAG repeat instability in human cells.
Publication TypeJournal Article
Year of Publication2010
AuthorsMittelman, D, Sykoudis, K, Hersh, M, Lin, Y, Wilson, JH
JournalCell Stress Chaperones
Volume15
Issue5
Pagination753-9
Date Published2010 Sep
ISSN1466-1268
KeywordsCell Line, HSP90 Heat-Shock Proteins, Humans, Immunoblotting, Microsatellite Instability, Rad51 Recombinase, RNA, Small Interfering, Trinucleotide Repeats
Abstract

The Hsp90 molecular chaperone has been implicated as a contributor to evolution in several organisms by revealing cryptic variation that can yield dramatic phenotypes when the chaperone is diverted from its normal functions by environmental stress. In addition, as a cancer drug target, Hsp90 inhibition has been documented to sensitize cells to DNA-damaging agents, suggesting a function for Hsp90 in DNA repair. Here we explore the potential role of Hsp90 in modulating the stability of nucleotide repeats, which in a number of species, including humans, exert subtle and quantitative consequences for protein function, morphological and behavioral traits, and disease. We report that impairment of Hsp90 in human cells induces contractions of CAG repeat tracks by tenfold. Inhibition of the recombinase Rad51, a downstream target of Hsp90, induces a comparable increase in repeat instability, suggesting that Hsp90-enabled homologous recombination normally functions to stabilize CAG repeat tracts. By contrast, Hsp90 inhibition does not increase the rate of gene-inactivating point mutations. The capacity of Hsp90 to modulate repeat-tract lengths suggests that the chaperone, in addition to exposing cryptic variation, might facilitate the expression of new phenotypes through induction of novel genetic variation.

DOI10.1007/s12192-010-0191-0
Alternate JournalCell Stress Chaperones
PubMed ID20373063
PubMed Central IDPMC3006633
Grant ListR01 GM038219 / GM / NIGMS NIH HHS / United States
F32 EY007001 / EY / NEI NIH HHS / United States
T32 DK007696 / DK / NIDDK NIH HHS / United States
T32 EY007001 / EY / NEI NIH HHS / United States
EY07001 / EY / NEI NIH HHS / United States
NS064762 / NS / NINDS NIH HHS / United States
DK007696 / DK / NIDDK NIH HHS / United States
GM38219 / GM / NIGMS NIH HHS / United States
F32 NS064762 / NS / NINDS NIH HHS / United States

Similar Publications

Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al.. The complete sequence of a human Y chromosome. Nature. 2023;621(7978):344-354.
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, et al.. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol. 2023;29(28):4416-4432.
Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14(1):5637.
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al.. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15(705):eadf5681.
Zhao N, Teles F, Lu J, Koestler DC, Beck J, Boerwinkle E, et al.. Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol. 2023;50(9):1140-1153.
Harris RA, McAllister JM, Strauss JF. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome. Int J Mol Sci. 2023;24(13).
Qian X, Srinivasan T, He J, Chen R. The Role of Ceramide in Inherited Retinal Disease Pathology. Adv Exp Med Biol. 2023;1415:303-307.
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.