Localization of multiple pleiotropic genes for lipoprotein metabolism in baboons.

TitleLocalization of multiple pleiotropic genes for lipoprotein metabolism in baboons.
Publication TypeJournal Article
Year of Publication2009
AuthorsRainwater, DL, Cox, LA, Rogers, J, VandeBerg, JL, Mahaney, MC
JournalJ Lipid Res
Volume50
Issue7
Pagination1420-8
Date Published2009 Jul
ISSN1539-7262
KeywordsAnimals, Chromosomes, Mammalian, Diet, Gene Expression Regulation, Genetic Linkage, Genotype, Humans, Lipid Metabolism, Lipids, Lipoproteins, Lod Score, Multigene Family, Papio, Quantitative Trait Loci
Abstract

We employed a novel approach to identify the key loci that harbor genes influencing lipoprotein metabolism in approximately 2,000 pedigreed baboons fed various diets differing in levels of fat and cholesterol. In this study, 126 overlapping traits related to both LDL and HDL metabolism were normalized and subjected to genome-wide linkage screening. As was expected, the traits were highly, but not completely, correlated. We exploited the information in these correlated traits by focusing on those genomic regions harboring quantitative trait loci (QTL) for multiple traits, reasoning that the more influential genes would impact a larger number of traits. This study identified five major QTL clusters (each with at least two significant logarithm of the odds scores >4.7), two of which had not been previously reported in baboons. One of these mapped to the baboon ortholog of human chromosome 1p32-p34 and influenced concentrations of LDL-cholesterol on Basal and high-fat, low-cholesterol diets. The other novel QTL cluster mapped to the baboon ortholog of human chromosome 12q13.13-q14.1 and influenced LDL size properties on high-fat, low-cholesterol and high-fat, high-cholesterol, but not Basal, diets. Confirming the value of this approach, three of the QTL clusters replicated published linkage findings for the same or similar traits.

DOI10.1194/jlr.M800583-JLR200
Alternate JournalJ Lipid Res
PubMed ID19270339
PubMed Central IDPMC2694340
Grant ListC06 RR-13556 / RR / NCRR NIH HHS / United States
P51 RR-013986 / RR / NCRR NIH HHS / United States
C06 RR-014578 / RR / NCRR NIH HHS / United States
C06 RR-017515 / RR / NCRR NIH HHS / United States
C06 RR-17332 / RR / NCRR NIH HHS / United States
P01 HL-028972 / HL / NHLBI NIH HHS / United States
C06 RR-15456 / RR / NCRR NIH HHS / United States

Similar Publications

Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14(1):5637.
Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al.. The complete sequence of a human Y chromosome. Nature. 2023;621(7978):344-354.
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, et al.. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol. 2023;29(28):4416-4432.
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Schlosser P, Zhang J, Liu H, Surapaneni AL, Rhee EP, Arking DE, et al.. Transcriptome- and proteome-wide association studies nominate determinants of kidney function and damage. Genome Biol. 2023;24(1):150.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Qian X, Srinivasan T, He J, Lu J, Jin Y, Gu H, et al.. Ceramide compensation by ceramide synthases preserves retinal function and structure in a retinal dystrophy mouse model. Dis Model Mech. 2023;16(7).
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al.. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15(705):eadf5681.
Zhao N, Teles F, Lu J, Koestler DC, Beck J, Boerwinkle E, et al.. Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol. 2023;50(9):1140-1153.