Loss of symmetric cell division of apical neural progenitors drives -related developmental and epileptic encephalopathy.

TitleLoss of symmetric cell division of apical neural progenitors drives -related developmental and epileptic encephalopathy.
Publication TypeJournal Article
Year of Publication2024
AuthorsBanks, E, Francis, V, Lin, S-J, Kharfallah, F, Fonov, V, Levesque, M, Han, C, Kulasekaran, G, Tuznik, M, Bayati, A, Al-Khater, R, Alkuraya, FS, Argyriou, L, Babaei, M, Bahlo, M, Bakhshoodeh, B, Barr, E, Bartik, L, Bassiony, M, Bertrand, M, Braun, D, Buchert, R, Budetta, M, Cadieux-Dion, M, Calame, D, Cope, H, Cushing, D, Efthymiou, S, Elmaksoud, MA, Said, HGEl, Froukh, T, Gill, HK, Gleeson, JG, Gogoll, L, Goh, ES-Y, Gowda, VK, Haack, TB, Hashem, MO, Hauser, S, Hoffman, TL, Hogue, JS, Hosokawa, A, Houlden, H, Huang, K, Huynh, S, Karimiani, EG, Kaulfuß, S, G Korenke, C, Kritzer, A, Lee, H, Lupski, JR, Marco, EJ, McWalter, K, Minassian, A, Minassian, BA, Murphy, D, Neira-Fresneda, J, Northrup, H, Nyaga, D, Oehl-Jaschkowitz, B, Osmond, M, Person, R, Pehlivan, D, Petree, C, Sadleir, LG, Saunders, C, Schoels, L, Shashi, V, Spillman, RC, Srinivasan, VM, Torbati, PN, Tos, T, Zaki, MS, Zhou, D, Zweier, C, Trempe, J-F, Durcan, TM, Gan-Or, Z, Avoli, M, Alves, C, Varshney, GK, Maroofian, R, Rudko, DA, McPherson, PS
Corporate AuthorsUndiagnosed Diseases Network
Date Published2024 Jan 31

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind -related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

Alternate JournalmedRxiv
PubMed ID38352438
PubMed Central IDPMC10863025
Grant ListR35 NS105078 / NS / NINDS NIH HHS / United States
U01 HG007672 / HG / NHGRI NIH HHS / United States
U01 HG007943 / HG / NHGRI NIH HHS / United States
U01 HG011758 / HG / NHGRI NIH HHS / United States