Title | Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island. |
Publication Type | Journal Article |
Year of Publication | 2005 |
Authors | Nallapareddy, SR, Wenxiang, H, Weinstock, GM, Murray, BE |
Journal | J Bacteriol |
Volume | 187 |
Issue | 16 |
Pagination | 5709-18 |
Date Published | 2005 Aug |
ISSN | 0021-9193 |
Keywords | Bacterial Proteins, Chromosomes, Bacterial, Drug Resistance, Bacterial, Endocarditis, Enterococcus faecalis, Genomic Islands, Gram-Positive Bacterial Infections, Humans, Virulence, Virulence Factors |
Abstract | Enterococcus faecalis, a common cause of endocarditis and known for its capacity to transfer antibiotic resistance to other pathogens, has recently emerged as an important, multidrug-resistant nosocomial pathogen. However, knowledge of its lineages and the potential of particular clones of this species to disseminate and cause disease is limited. Using a nine-gene multilocus sequence typing (MLST) scheme, we identified an evolving and widespread clonal complex of E. faecalis that has caused outbreaks and life-threatening infections. Moreover, this unusual clonal complex was found to contain isolates of unexpected relatedness, including the first known U.S. vancomycin-resistant enterococcus (E. faecalis strain V583), the first known penicillinase-producing (Bla(+)) E. faecalis isolate, and the previously described widespread clone of penicillinase producers, a trait found in <0.1% of E. faecalis isolates. All members of this clonal cluster (designated as BVE for Bla(+) Van(r) endocarditis) were found to contain a previously described putative pathogenicity island (PAI). Further analysis of this PAI demonstrated its dissemination worldwide, albeit with considerable variability, confirmed its association with clinical isolates, and found a common insertion site in different clonal lineages. PAI deletions, MLST, and the uncommon resistances were used to predict the evolution of the BVE clonal cluster. The finding of a virulent and highly successful clonal complex of E. faecalis with different members resistant to the primary therapies of choice, ampicillin and vancomycin, has important implications for the evolution of virulence and successful lineages and for public health monitoring and control. |
DOI | 10.1128/JB.187.16.5709-5718.2005 |
Alternate Journal | J Bacteriol |
PubMed ID | 16077117 |
PubMed Central ID | PMC1196071 |
Grant List | R37 AI047923 / AI / NIAID NIH HHS / United States R37 AI47923 / AI / NIAID NIH HHS / United States |
Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island.
Similar Publications
Inverted triplications formed by iterative template switches generate structural variant diversity at genomic disorder loci. Cell Genom. 2024;4(7):100590. | .
Unveiling novel genetic variants in 370 challenging medically relevant genes using the long read sequencing data of 41 samples from 19 global populations. Mol Genet Genomics. 2024;299(1):65. | .
Genetic diversity of 1,845 rhesus macaques improves genetic variation interpretation and identifies disease models. Nat Commun. 2024;15(1):5658. | .