Title | Mutational analysis of the latency-associated nuclear antigen DNA-binding domain of Kaposi's sarcoma-associated herpesvirus reveals structural conservation among gammaherpesvirus origin-binding proteins. |
Publication Type | Journal Article |
Year of Publication | 2010 |
Authors | Han, S-J, Hu, J, Pierce, B, Weng, Z, Renne, R |
Journal | J Gen Virol |
Volume | 91 |
Issue | Pt 9 |
Pagination | 2203-15 |
Date Published | 2010 Sep |
ISSN | 1465-2099 |
Keywords | Amino Acid Sequence, Amino Acid Substitution, Animals, Antigens, Viral, Binding Sites, Cell Line, Chlorocebus aethiops, Conserved Sequence, DNA Replication, DNA, Viral, Electrophoretic Mobility Shift Assay, Epstein-Barr Virus Nuclear Antigens, Evolution, Molecular, Gammaherpesvirinae, Herpesvirus 8, Human, Humans, Models, Molecular, Molecular Sequence Data, Mutant Proteins, Mutation, Nuclear Proteins, Protein Multimerization, Protein Structure, Quaternary, Protein Structure, Tertiary, Sequence Homology, Amino Acid, Structural Homology, Protein |
Abstract | The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus functions as an origin-binding protein (OBP) and transcriptional regulator. LANA binds the terminal repeats via the C-terminal DNA-binding domain (DBD) to support latent DNA replication. To date, the structure of LANA has not been solved. Sequence alignments among OBPs of gammaherpesviruses have revealed that the C terminus of LANA is structurally related to EBNA1, the OBP of Epstein-Barr virus. Based on secondary structure predictions for LANA(DBD) and published structures of EBNA1(DBD), this study used bioinformatics tools to model a putative structure for LANA(DBD) bound to DNA. To validate the predicted model, 38 mutants targeting the most conserved motifs, namely three alpha-helices and a conserved proline loop, were constructed and functionally tested. In agreement with data for EBNA1, residues in helices 1 and 2 mainly contributed to sequence-specific DNA binding and replication activity, whilst mutations in helix 3 affected replication activity and multimer formation. Additionally, several mutants were isolated with discordant phenotypes, which may aid further studies into LANA function. In summary, these data suggest that the secondary and tertiary structures of LANA and EBNA1 DBDs are conserved and are critical for (i) sequence-specific DNA binding, (ii) multimer formation, (iii) LANA-dependent transcriptional repression, and (iv) DNA replication. |
DOI | 10.1099/vir.0.020958-0 |
Alternate Journal | J Gen Virol |
PubMed ID | 20484563 |
PubMed Central ID | PMC3066550 |
Grant List | R01 CA088763 / CA / NCI NIH HHS / United States R01 CA119917 / CA / NCI NIH HHS / United States R01 GM084884 / GM / NIGMS NIH HHS / United States R01 CA88763 / CA / NCI NIH HHS / United States |
Mutational analysis of the latency-associated nuclear antigen DNA-binding domain of Kaposi's sarcoma-associated herpesvirus reveals structural conservation among gammaherpesvirus origin-binding proteins.
Similar Publications
Single cell dual-omic atlas of the human developing retina. Nat Commun. 2024;15(1):6792. | .
Improved high quality sand fly assemblies enabled by ultra low input long read sequencing. Sci Data. 2024;11(1):918. | .
Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy. Nat Commun. 2024;15(1):7239. | .