Novel Anaplastic Thyroid Cancer PDXs and Cell Lines: Expanding Preclinical Models of Genetic Diversity.

TitleNovel Anaplastic Thyroid Cancer PDXs and Cell Lines: Expanding Preclinical Models of Genetic Diversity.
Publication TypeJournal Article
Year of Publication2021
AuthorsManiakas, A, Henderson, YC, Hei, H, Peng, S, Chen, Y, Jiang, Y, Ji, S, Cardenas, M, Chiu, Y, Bell, D, Williams, MD, Hofmann, M-C, Scherer, SE, Wheeler, DA, Busaidy, NL, Dadu, R, Wang, JR, Cabanillas, ME, Zafereo, M, Johnson, FM, Lai, SY
JournalJ Clin Endocrinol Metab
Volume106
Issue11
Paginatione4652-e4665
Date Published2021 10 21
ISSN1945-7197
Abstract

CONTEXT: Anaplastic thyroid cancer (ATC) is a rare, aggressive, and deadly disease. Robust preclinical thyroid cancer models are needed to adequately develop and study novel therapeutic agents. Patient-derived xenograft (PDX) models may resemble patient tumors by recapitulating key genetic alterations and gene expression patterns, making them excellent preclinical models for drug response evaluation.

OBJECTIVE: We developed distinct ATC PDX models concurrently with cell lines and characterized them in vitro and in vivo.

METHODS: Fresh thyroid tumor from patients with a preoperative diagnosis of ATC was surgically collected and divided for concurrent cell line and PDX model development. Cell lines were created by generating single cells through enzymatic digestion. PDX models were developed following direct subcutaneous implantation of fresh tumor on the flank of immune compromised/athymic mice.

RESULTS: Six ATC PDX models and 4 cell lines were developed with distinct genetic profiles. Mutational characterization showed one BRAF/TP53/CDKN2A, one BRAF/CDKN2A, one BRAF/TP53, one TP53 only, one TERT-promoter/HRAS, and one TERT-promoter/KRAS/TP53/NF2/NFE2L2 mutated phenotype. Hematoxylin-eosin staining comparing the PDX models to the original patient surgical specimens show remarkable resemblance, while immunohistochemistry stains for important biomarkers were in full concordance (cytokeratin, TTF-1, PAX8, BRAF). Short tandem repeats DNA fingerprinting analysis of all PDX models and cell lines showed strong concordance with the original tumor. PDX successful establishment rate was 32%.

CONCLUSION: We have developed and characterized 6 novel ATC PDX models with 4 matching cell lines. Each PDX model harbors a distinct genetic profile, making them excellent tools for preclinical therapeutic trials.

DOI10.1210/clinem/dgab453
Alternate JournalJ Clin Endocrinol Metab
PubMed ID34147031
PubMed Central IDPMC8530744
Grant ListP30 CA016672 / CA / NCI NIH HHS / United States
P30CA016672 / CA / NCI NIH HHS / United States