Pash: efficient genome-scale sequence anchoring by Positional Hashing.

TitlePash: efficient genome-scale sequence anchoring by Positional Hashing.
Publication TypeJournal Article
Year of Publication2004
AuthorsKalafus, KJ, Jackson, AR, Milosavljevic, A
JournalGenome Res
Volume14
Issue4
Pagination672-8
Date Published2004 Apr
ISSN1088-9051
KeywordsAnimals, Chromosome Mapping, Cluster Analysis, Computational Biology, DNA, Genome, Genome, Human, Humans, Mice, Pan troglodytes, Rats, Sensitivity and Specificity, Software
Abstract

Pash is a computer program for efficient, parallel, all-against-all comparison of very long DNA sequences. Pash implements Positional Hashing, a novel parallelizable method for sequence comparison based on k-mer representation of sequences. The Positional Hashing method breaks the comparison problem in a unique way that avoids the quadratic penalty encountered with other sensitive methods and confers inherent low-level parallelism. Furthermore, Positional Hashing allows one to readily and predictably trade between sensitivity and speed. In a simulated comparison task, anchoring computationally mutated reads onto a genome, the sensitivity of Pash was equal to or greater than that of BLAST and BLAT, with Pash outperforming these programs as the reads became shorter and less similar to the genome. Using modest computing resources, we employed Pash for two large-scale sequence comparison tasks: comparison of three mammalian genomes, and anchoring millions of chimpanzee whole-genome shotgun sequencing reads onto the human genome. The results of these comparisons by Pash agree with those computed by other methods that use more than an order of magnitude more computing resources. These results confirm the sensitivity of Positional Hashing.

DOI10.1101/gr.1963804
Alternate JournalGenome Res
PubMed ID15060009
PubMed Central IDPMC383312

Similar Publications

Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14(1):5637.
Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al.. The complete sequence of a human Y chromosome. Nature. 2023;621(7978):344-354.
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, et al.. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol. 2023;29(28):4416-4432.
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Schlosser P, Zhang J, Liu H, Surapaneni AL, Rhee EP, Arking DE, et al.. Transcriptome- and proteome-wide association studies nominate determinants of kidney function and damage. Genome Biol. 2023;24(1):150.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Zhao N, Teles F, Lu J, Koestler DC, Beck J, Boerwinkle E, et al.. Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol. 2023;50(9):1140-1153.
Harris RA, McAllister JM, Strauss JF. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome. Int J Mol Sci. 2023;24(13).
Qian X, Srinivasan T, He J, Chen R. The Role of Ceramide in Inherited Retinal Disease Pathology. Adv Exp Med Biol. 2023;1415:303-307.
Lu J, Zheng KQ, Bertrand RElaine, Quinlan J, Ferdous S, Srinivasan T, et al.. Gene augmentation therapy to rescue degenerative photoreceptors in a Cwc27 mutant mouse model. Exp Eye Res. 2023;234:109596.