Publication TypeJournal Article
Year of Publication2019
AuthorsZou, X, Fu, Q, Fang, S, Li, H, Ge, Z, Yang, L, Xu, M, Sun, Z, Li, H, Li, Y, Dong, F, Chen, R, Sui, R
Date Published2019 Oct
KeywordsAdolescent, Adult, Alcohol Oxidoreductases, Biological Variation, Population, Child, Child, Preschool, DNA Mutational Analysis, Electroretinography, Eye Diseases, Hereditary, Female, Genotype, Humans, Male, Middle Aged, Mutation, Pedigree, Phenotype, Retinal Dystrophies, Visual Acuity, Young Adult

PURPOSE: To characterize the phenotypic variability and report the genetic defects in a cohort of Chinese patients with biallelic variants of the retinol dehydrogenase 12 (RDH12) gene.

METHODS: The study included 38 patients from 38 unrelated families with biallelic pathogenic RDH12 variants. Systematic next-generation sequencing data analysis, Sanger sequencing validation, and segregation analysis were used to identify the pathogenic mutations. Detailed ophthalmic examinations, including electroretinogram, fundus photography, fundus autofluorescence and optical coherence tomography, and statistical analysis were performed to evaluate phenotype variability.

RESULTS: Twenty-five different mutations of RDH12 were identified in the 38 families. Six of these variants were novel. Val146Asp was observed at the highest frequency (23.7%), and it was followed by Arg62Ter (14.5%) and Thr49Met (9.2%). Twenty-three probands were diagnosed with early-onset severe retinal dystrophy, 6 with Leber congenital amaurosis, 7 with autosomal recessive retinitis pigmentosa, and 2 with cone-rod dystrophy. Self-reported nyctalopia occurred in about a half of patients (55.3%) and was significantly more common among older patients (P 3D (P

CONCLUSION: Several high-frequency RDH12 variants were identified in patients with inherited retinal dystrophies, most of which were missense mutations. Variable but characteristic phenotypes of a progressive nature was observed. Overall, the findings indicated that biallelic RDH12 mutations are a common cause of early-onset retinal dystrophy and a rare cause of cone-rod dystrophy.

Alternate JournalRetina
PubMed ID30134391

Similar Publications

Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14(1):5637.
Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al.. The complete sequence of a human Y chromosome. Nature. 2023;621(7978):344-354.
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, et al.. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol. 2023;29(28):4416-4432.
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Qian X, Srinivasan T, He J, Chen R. The Role of Ceramide in Inherited Retinal Disease Pathology. Adv Exp Med Biol. 2023;1415:303-307.
Lu J, Zheng KQ, Bertrand RElaine, Quinlan J, Ferdous S, Srinivasan T, et al.. Gene augmentation therapy to rescue degenerative photoreceptors in a Cwc27 mutant mouse model. Exp Eye Res. 2023;234:109596.
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al.. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15(705):eadf5681.
Qian X, Srinivasan T, He J, Lu J, Jin Y, Gu H, et al.. Ceramide compensation by ceramide synthases preserves retinal function and structure in a retinal dystrophy mouse model. Dis Model Mech. 2023;16(7).