Pooled genomic indexing of rhesus macaque.

TitlePooled genomic indexing of rhesus macaque.
Publication TypeJournal Article
Year of Publication2005
AuthorsMilosavljevic, A, Harris, RA, Sodergren, EJ, Jackson, AR, Kalafus, KJ, Hodgson, A, Cree, A, Dai, W, Csuros, M, Zhu, B, De Jong, PJ, Weinstock, GM, Gibbs, RA
JournalGenome Res
Date Published2005 Feb
KeywordsAnimals, Chromosome Aberrations, Chromosomes, Artificial, Bacterial, Contig Mapping, DNA, Genetic Markers, Genome, Genome, Human, Humans, Macaca mulatta, Sequence Alignment, Sequence Analysis, DNA

Pooled genomic indexing (PGI) is a method for mapping collections of bacterial artificial chromosome (BAC) clones between species by using a combination of clone pooling and DNA sequencing. PGI has been used to map a total of 3858 BAC clones covering approximately 24% of the rhesus macaque (Macaca mulatta) genome onto 4178 homologous loci in the human genome. A number of intrachromosomal rearrangements were detected by mapping multiple segments within the individual rhesus BACs onto multiple disjoined loci in the human genome. Transversal pooling designs involving shuffled BAC arrays were employed for robust mapping even with modest DNA sequence read coverage. A further innovation, short-tag pooled genomic indexing (ST-PGI), was also introduced to further improve the economy of mapping by sequencing multiple, short, mapable tags within a single sequencing reaction.

Alternate JournalGenome Res
PubMed ID15687293
PubMed Central IDPMC546531
Grant ListR01 HG 02583-01 / HG / NHGRI NIH HHS / United States
R01 HG002583 / HG / NHGRI NIH HHS / United States
U54 HG 02051 / HG / NHGRI NIH HHS / United States
U01 RR 18464 / RR / NCRR NIH HHS / United States
U54 HG002051 / HG / NHGRI NIH HHS / United States
U01 RR018464 / RR / NCRR NIH HHS / United States

Similar Publications

Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al.. The complete sequence of a human Y chromosome. Nature. 2023;621(7978):344-354.
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, et al.. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol. 2023;29(28):4416-4432.
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14(1):5637.
Schlosser P, Zhang J, Liu H, Surapaneni AL, Rhee EP, Arking DE, et al.. Transcriptome- and proteome-wide association studies nominate determinants of kidney function and damage. Genome Biol. 2023;24(1):150.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Lu J, Zheng KQ, Bertrand RElaine, Quinlan J, Ferdous S, Srinivasan T, et al.. Gene augmentation therapy to rescue degenerative photoreceptors in a Cwc27 mutant mouse model. Exp Eye Res. 2023;234:109596.
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al.. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15(705):eadf5681.
Qian X, Srinivasan T, He J, Lu J, Jin Y, Gu H, et al.. Ceramide compensation by ceramide synthases preserves retinal function and structure in a retinal dystrophy mouse model. Dis Model Mech. 2023;16(7).