SVExpress: identifying gene features altered recurrently in expression with nearby structural variant breakpoints.

TitleSVExpress: identifying gene features altered recurrently in expression with nearby structural variant breakpoints.
Publication TypeJournal Article
Year of Publication2021
AuthorsZhang, Y, Chen, F, Creighton, CJ
JournalBMC Bioinformatics
Date Published2021 Mar 21
KeywordsDNA Copy Number Variations, Genome, Genome, Human, Genomic Structural Variation, Genomics, Humans, Whole Genome Sequencing

BACKGROUND: Combined whole-genome sequencing (WGS) and RNA sequencing of cancers offer the opportunity to identify genes with altered expression due to genomic rearrangements. Somatic structural variants (SVs), as identified by WGS, can involve altered gene cis-regulation, gene fusions, copy number alterations, or gene disruption. The absence of computational tools to streamline integrative analysis steps may represent a barrier in identifying genes recurrently altered by genomic rearrangement.

RESULTS: Here, we introduce SVExpress, a set of tools for carrying out integrative analysis of SV and gene expression data. SVExpress enables systematic cataloging of genes that consistently show increased or decreased expression in conjunction with the presence of nearby SV breakpoints. SVExpress can evaluate breakpoints in proximity to genes for potential enhancer translocation events or disruption of topologically associated domains, two mechanisms by which SVs may deregulate genes. The output from any commonly used SV calling algorithm may be easily adapted for use with SVExpress. SVExpress can readily analyze genomic datasets involving hundreds of cancer sample profiles. Here, we used SVExpress to analyze SV and expression data across 327 cancer cell lines with combined SV and expression data in the Cancer Cell Line Encyclopedia (CCLE). In the CCLE dataset, hundreds of genes showed altered gene expression in relation to nearby SV breakpoints. Altered genes involved TAD disruption, enhancer hijacking, and gene fusions. When comparing the top set of SV-altered genes from cancer cell lines with the top SV-altered genes previously reported for human tumors from The Cancer Genome Atlas and the Pan-Cancer Analysis of Whole Genomes datasets, a significant number of genes overlapped in the same direction for both cell lines and tumors, while some genes were significant for cell lines but not for human tumors and vice versa.

CONCLUSION: Our SVExpress tools allow computational biologists with a working knowledge of R to integrate gene expression with SV breakpoint data to identify recurrently altered genes. SVExpress is freely available for academic or commercial use at . SVExpress is implemented as a set of Excel macros and R code. All source code (R and Visual Basic for Applications) is available.

Alternate JournalBMC Bioinformatics
PubMed ID33743584
PubMed Central IDPMC7981925
Grant ListCA125123 / / Foundation for the National Institutes of Health /

Similar Publications

Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14(1):5637.
Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al.. The complete sequence of a human Y chromosome. Nature. 2023;621(7978):344-354.
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, et al.. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol. 2023;29(28):4416-4432.
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Zhao N, Teles F, Lu J, Koestler DC, Beck J, Boerwinkle E, et al.. Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol. 2023;50(9):1140-1153.
Harris RA, McAllister JM, Strauss JF. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome. Int J Mol Sci. 2023;24(13).
Qian X, Srinivasan T, He J, Chen R. The Role of Ceramide in Inherited Retinal Disease Pathology. Adv Exp Med Biol. 2023;1415:303-307.
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al.. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15(705):eadf5681.