Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria.

TitleWhole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria.
Publication TypeJournal Article
Year of Publication2011
AuthorsMurdock, DR, Clark, GD, Bainbridge, MN, Newsham, I, Wu, Y-Q, Muzny, DM, Cheung, SWai, Gibbs, RA, Ramocki, MB
JournalAm J Med Genet A
Volume155A
Issue9
Pagination2071-7
Date Published2011 Sep
ISSN1552-4833
KeywordsAbnormalities, Multiple, Adult, Base Sequence, Cell Cycle Proteins, Child, Craniofacial Abnormalities, Exome, Female, Frameshift Mutation, Genetic Testing, Heterozygote, High-Throughput Nucleotide Sequencing, Humans, Magnetic Resonance Imaging, Male, Malformations of Cortical Development, Mutation, Nerve Tissue Proteins, Sequence Analysis, DNA, Sequence Deletion, Siblings
Abstract

Polymicrogyria is a disorder of neuronal development resulting in structurally abnormal cerebral hemispheres characterized by over-folding and abnormal lamination of the cerebral cortex. Polymicrogyria is frequently associated with severe neurologic deficits including intellectual disability, motor problems, and epilepsy. There are acquired and genetic causes of polymicrogyria, but most patients with a presumed genetic etiology lack a specific diagnosis. Here we report using whole-exome sequencing to identify compound heterozygous mutations in the WD repeat domain 62 (WDR62) gene as the cause of recurrent polymicrogyria in a sibling pair. Sanger sequencing confirmed that the siblings both inherited 1-bp (maternal allele) and 2-bp (paternal allele) frameshift deletions, which predict premature truncation of WDR62, a protein that has a role in early cortical development. The probands are from a non-consanguineous family of Northern European descent, suggesting that autosomal recessive PMG due to compound heterozygous mutation of WDR62 might be a relatively common cause of PMG in the population. Further studies to identify mutation frequency in the population are needed.

DOI10.1002/ajmg.a.34165
Alternate JournalAm J Med Genet A
PubMed ID21834044
PubMed Central IDPMC3616765
Grant ListK08 NS062711 / NS / NINDS NIH HHS / United States
T32 GM007526 / GM / NIGMS NIH HHS / United States
5K08NS062711-03 / NS / NINDS NIH HHS / United States

Similar Publications

Chen F, Zhang Y, Chandrashekar DS, Varambally S, Creighton CJ. Global impact of somatic structural variation on the cancer proteome. Nat Commun. 2023;14(1):5637.
Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, et al.. The complete sequence of a human Y chromosome. Nature. 2023;621(7978):344-354.
Saengboonmee C, Sorin S, Sangkhamanon S, Chomphoo S, Indramanee S, Seubwai W, et al.. γ-aminobutyric acid B2 receptor: A potential therapeutic target for cholangiocarcinoma in patients with diabetes mellitus. World J Gastroenterol. 2023;29(28):4416-4432.
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, et al.. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet. 2023;110(8):1229-1248.
Chin C-S, Behera S, Khalak A, Sedlazeck FJ, Sudmant PH, Wagner J, et al.. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat Methods. 2023;20(8):1213-1221.
Calame DG, Guo T, Wang C, Garrett L, Jolly A, Dawood M, et al.. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am J Hum Genet. 2023;110(8):1394-1413.
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, et al.. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med. 2023;15(705):eadf5681.
Zhao N, Teles F, Lu J, Koestler DC, Beck J, Boerwinkle E, et al.. Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol. 2023;50(9):1140-1153.
Harris RA, McAllister JM, Strauss JF. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome. Int J Mol Sci. 2023;24(13).
Qian X, Srinivasan T, He J, Chen R. The Role of Ceramide in Inherited Retinal Disease Pathology. Adv Exp Med Biol. 2023;1415:303-307.