BCM-HGSC in the News
PacBio Blog Interviews Baylor’s Fritz Sedlazeck on New Long-Read Algorithms - (Monday, April 30, 2018)
A PacBio blogger reached out to Dr. Fritz Sedlazeck of Baylor's Human Genome Sequencing Center to learn more about a newly published article appearing in Nature Methods, "Accurate detection of complex structural variations using single-molecule sequencing." Lead author Sedlazeck discusses two new tools designed for use with long-read sequencing data, the NGMLR aligner and Sniffles structural variant caller.
Scientists seek to sequence genomes of all known species - (Monday, April 23, 2018)
Ever since the completion of the Human Genome Project, scientists have become increasingly interested in sequencing the genomes of more cultures and populations of humans, as well as various species of animals and organisms to better understand evolution, adaptability and disease susceptibility. In what is perhaps the most ambitious biological proposal since the initial Human Genome Project, an international group of researchers, including researchers from Baylor College of Medicine, seek to sequence every known species that calls planet Earth home. The perspective piece on the project, called the Earth BioGenome Project, appears in the journal Proceedings of the National Academy of Sciences.
The unprecedented initiative aims to sequence each of the roughly 1.5 million species of eukaryotes – all living organisms with a clearly defined nucleus – that have been described in modern science, although there are estimated to be upward of 15 million species, most of which have yet to be identified.
“There are several reasons, both philosophical and practical, as to why this global initiative is a crucial one,” said Dr. Stephen Richards, associate professor in the Human Genome Sequencing Center at Baylor. “The Earth BioGenome Project will demonstrate the value of life on earth, provide a comprehensive understanding of the primary genetic data of life, reveal insights into future novel therapies and drug development and connect the large population of urban humans to the ecosystems that exist, and may be in jeopardy, across the world.”
Researchers impact final round in The Cancer Genome Atlas - (Friday, April 6, 2018)
When The Cancer Genome Atlas (TCGA) was initiated in 2006, it brought together broad and talented research teams from around the country. By the time it ended in 2017, it had involved faculty from numerous departments across Baylor College of Medicine, the Dan L Duncan Comprehensive Cancer Center and the Human Genome Sequencing Center.
This week, a collection of 27 papers is being published reporting on the integrated project to analyze all 33 cancer types and to classify mutations and specific pathways. The release of 29 papers, many of them with significant contributions from Baylor researchers, and findings from the 11,000 patient cohort data appear in the current editions of Cell publications. The project has produced game changers for translational research and clinical trials.
The things we learn from the TCGA have the potential to impact clinical practice, drug development and the way we diagnose and treat a wide range of cancers
“The TCGA project allowed us to apply team science to biology, and the things we learn from the TCGA have the potential to impact clinical practice, drug development and the way we diagnose and treat a wide range of cancers,” said Dr. David Wheeler, professor of molecular and human genetics in the Human Genome Sequencing Center at Baylor.
The papers are grouped into three key themes that explore Cancer Pathways, Cell of Origin and Oncogenic Processes. Wheeler co-organized and co-led the Oncogenic Processes theme.
Comparison of Cockroach and Termite Genomes Reveal Clues to Evolution of Eusociality - (Monday, February 5, 2018)
A new paper published in Nature Ecology & Evolution reports the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. The comparison of termite and cockroach genomes and transriptomes against the background of eusocial and non-eusocial insects uncovers the signatures of the evolution of termite eusociality. As part of the i5K intiative, the Baylor College of Medicine Human Genome Sequencing Center sequenced the German cockroach genome.
Primate genomics study reveals clues into AIDS resistance - (Wednesday, January 3, 2018)
Simian immunodeficiency virus (SIV) infection in macaques behaves in a similar way as infection by human immunodeficiency virus (HIV) in humans, progressing into acquired immunodeficiency syndrome (AIDS) over time. However, in sooty mangabeys, a primate species native to West Africa, SIV infection is non-pathogenic. Researchers from an international group of institutions, organized and led by Baylor College of Medicine and Emory University, set out to sequence and analyze the genomes of two nonhuman primates to investigate the mechanisms that drive disease progression, and thus to develop new insights into the behavior of the HIV virus in humans. The research appears in Nature.
“Primates are natural hosts for certain diseases, and sooty mangabeys in particular are natural hosts for SIV, meaning they can be naturally infected with the virus and sustain long-term infection without ever progressing to disease. However, macaques rapidly progress into AIDS-like disease and succumb to SIV when infected,” said Dr. Jeffrey Rogers, associate professor in the Human Genome Sequencing Center (HGSC) and Department of Molecular and Human Genetics at Baylor.
Researchers at the Yerkes National Primate Research Center, Emory University, led by Dr. Guido Silvestri, shared sooty mangabey samples with Rogers and his team at the HGSC to be sequenced and assembled. Once sequenced, the mangabey genome results were sent back to Emory for analysis, including direct comparison with the rhesus macaque and human genomes.
Research resumes after Hurricane Harvey - (Tuesday, September 5, 2017)
Dr. Richard Gibbs, director of the Human Genome Sequencing Center, praises the preparation protocols that made it possible for research to resume at Baylor College of Medicine so quickly after Hurricane Harvey.
Rare Whole Genome Duplication Gave Rise To Arizona Bark Scorpion - (Wednesday, August 23, 2017)
Dr. Kim Worley of the Baylor College of Medicine Human Genome Sequencing Center spoke with science journalist Nicholas Gerbis of KJZZ in Phoenix about the genome study of the common house spider and the Arizona bark scorpion appearing in BMC Biology.
Analysis of these genomes indicates that spiders and scorpions share an ancestor that made new copies of all the genes in its genome over 400 million years ago. This process, known as whole genome duplication, is one of the largest evolutionary changes that can happen to a genome and is relatively rare during animal evolution.
"One copy can continue to provide the functions that it was used for originally," remarked Worley, "and the new copy is not constrained to provide those functions because the original copy's already providing it."
Researchers sequence megapest genome, aim to stop spread - (Tuesday, August 8, 2017)
The Human Genome Sequencing Center at Baylor College of Medicine, in collaboration with the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) and an international team of renowned researchers, has sequenced the genomes of the world’s most destructive caterpillar pests of broad-acre crops. The research appears in BCM Biology.
Helicoverpa armigera and Helicoverpa zea, commonly known as the Cotton Bollworm and Corn Earworm, respectively, cause in excess of $5 billion in control costs and damage each year across Asia, Europe, Africa, the Americas and Australia. The old-world bollworm, which is dominant in Australia, attacks more crops and develops much more resistance to pesticides than its new-world earworm counterpart.
“The bollworm is the single most important pest of agriculture in the world, making it humanity’s greatest competitor for food and fiber," said CSIRO scientist Dr. John Oakeshott. "Its genomic arsenal has allowed it to outgun all our known insecticides through the development of resistance, reflecting its name armigera, which means armed and warlike.’
In Brazil, the recently arrived bollworm H. armigera has been spreading rapidly, and cases of it hybridizing with the earworm have been found, posing a real threat that this new “superbug” could spread into the United States.
Because they are good fliers, populations of the old-world bollworm range across Europe to China and as far as Australia, with the oceans separating them from the new-world Corn Earworm known in the Americas.
“There has been good control of the Cotton Bollworm with Bt Cotton, a plant that expresses a toxic bacterial insecticide, which enabled far less use of chemical pesticides. But the species is adept at overcoming both plant resistance and pesticides as evidenced by the many genes encoding detoxifying enzymes found in its genome – a major reason for its megapest status,” said Dr. Stephen Richards, assistant professor in the Human Genome Sequencing Center at Baylor.
Identifying pest origins will enable resistance profiling that reflects countries of origin when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots, including national ports. These genome sequences also allow the application of new genetic tools such as RNA interference and CRISPR to be used in an attempt to control these pests.
Grant to compare large-scale genomic sequencing, standard clinical tests for childhood cancer patients - (Tuesday, August 8, 2017)
Baylor College of Medicine is one of six U.S. institutions to receive a grant through the National Human Genome Research Institute’s Clinical Sequencing Evidence-Generating Research Consortium, or CSER2. The four-year grant, including $2.8 million for fiscal year 2017, co-funded by the National Cancer Institute, will support Baylor’s new KidsCanSeq program that will compare the results of large-scale genomic testing, such as whole exome sequencing, to targeted clinical tests in childhood cancer patients at five sites across the state that serve a highly diverse patient population, including Texas Children’s Cancer Center.
This study includes a comprehensive set of genomic tests that will be performed by a unique collaboration between multiple diagnostic facilities with the involvement of Dr. Richard Gibbs, director of the Human Genome Sequencing Center, Drs. Christine Eng and Shashikant Kulkarni, professors of molecular and human genetics, all of Baylor, and Dr. Angshumoy Roy, assistant professor of pathology & immunology at Baylor and Texas Children’s Hospital.
KidsCanSeq follows the Baylor Advancing Sequencing in Childhood Cancer Care (BASIC3) study at Baylor and Texas Children’s Cancer Center, which developed the initial protocols for performing clinical genomic testing of pediatric cancer patients, reporting results and communicating those results to families and oncologists. BASIC3 was part of the NHGRI Clinical Sequencing Exploratory Research program, a precursor to CSER2.
Genome sequencing shows spiders, scorpions share ancestor - (Monday, July 31, 2017)
In collaboration with scientists from the U.K., Europe, Japan and the United States, researchers at the Human Genome Sequencing Center at Baylor College of Medicine have discovered a whole genome duplication during the evolution of spiders and scorpions. The study appears in BMC Biology.
Researchers have long been studying spiders and scorpions for both applied reasons, such as studying venom components for pharmaceuticals and silks for materials science, and for basic questions such as the reasons for the evolution and to understand the development and ecological success of this diverse group of carnivorous organisms.
As part of a pilot project for the i5K, a project to study the genomes of 5,000 arthropod species, the Human Genome Sequencing Center analyzed the genome of the house spider Parasteatoda tepidariorum – a model species studied in laboratories – and the Arizona bark scorpion Centruroides sculpturatus, – the most venomous scorpion in North America.
Analysis of these genomes revealed that spiders and scorpions evolved from a shared ancestor more than 400 million years ago, which made new copies of all of the genes in its genome, a process called whole genome duplication. Such an event is one of the largest evolutionary changes that can happen to a genome and is relatively rare during animal evolution.
Dr. Stephen Richards, associate professor in the Human Genome Sequencing Center, who led the genome sequencing at Baylor, said, “It is tremendously exciting to see rapid progress in our molecular understanding of a species that we coexist with on planet earth. Spider genome analysis is particularly tricky, and we believe this is one of the highest quality spider genomes to date.”
“Many people fear spiders and scorpions, but this research shows what a beautiful part of the evolutionary tree they represent,” said Dr. Richard Gibbs, director of the Human Genome Sequencing Center and the Wofford Cain Chair and professor of molecular and human genetics at Baylor.
“Costs have now dropped rapidly enough from tens of millions of dollars to merely a few thousand dollars for this genomic analyses to now be performed on any species,” Richards said. “There is still so much more to learn about the life on earth around us, and I believe this result is just the beginning of understanding the molecular make up of spiders.”
For a full list of contributors and funding sources, click here.