BCM-HGSC in the News
Baylor researchers receive grant to study canine cancer, test new therapies for translation to human cancers - (Thursday, September 29, 2016)
Researchers at Baylor College of Medicine have been awarded a $500,000 grant from the National Institutes of Health that will increase our understanding about the interactions between cancer and the immune system in dogs with naturally occurring tumors. The project will study dogs that have been diagnosed with cancer at the collaborating veterinary hospitals and apply that knowledge to the understanding of human cancer.
Dr. Jonathan Levitt, associate professor of pathology & immunology at Baylor leads the project, which involves a large group of investigators, including Drs. David Wheeler and Linghua Wang in the Human Genome Sequencing Center at Baylor.
The researchers will determine whether spontaneously arising canine organ-site tumors are sufficiently similar to those of humans to employ canine cancer as a model for trials of experimental combination therapies for human use. Another major goal of this study is to characterize the immune cells that infiltrate canine tumors and compare them with those in the respective human cancers.
Baylor researchers develop hybrid computational strategy for scalable whole genome data analysis - (Monday, September 12, 2016)
In a study published in BMC Bioinformatics, researchers from Baylor College of Medicine’s Human Genome Sequencing Center, along with Oak Ridge National Laboratory, DNAnexus and the Human Genetics Center at the University of Texas Health Science Center, have developed a novel hybrid computational strategy to address the growing need for scalable, cost effective and real time variant calling of whole genome sequencing data.
This new strategy has proven successful in analyzing an unprecedented set of 5,000 samples, which constitute a critical part for the international consortia efforts called CHARGE (The Cohorts for Heart and Aging Research in Genomic Epidemiology), aiming to identify genetic culprits for a number of common chronic diseases.
“The demand for and the sheer size of sequencing is advancing more quickly than the downstream analytical technologies can adapt.” said Dr. Zhuoyi Huang, the leading author and a postdoctoral fellow with Baylor’s Human Genome Sequencing Center.
“We have created a strategy that is highly scalable for increasingly larger samples, and have developed an understanding of best practices for the process, which can be replicated by other research institutions,” said Dr. Navin Rustagi, the other leading author on the paper, also a postdoctoral fellow with the Human Genome Sequencing Center at Baylor.
Researchers sequence genome of tobacco hornworm - (Monday, August 15, 2016)
An international team has sequenced the genome of the tobacco hornworm - a caterpillar species used in many research laboratories for studies of insect biology.
Michael Kanost, Kansas State University distinguished professor of biochemistry and molecular biophysics, led the team of 114 researchers from 50 institutions and 11 countries. Gary Blissard of the Boyce Thompson Institute at Cornell University is the co-senior author. The Baylor College of Medicine Human Genome Sequencing Center performed the genome sequencing on samples prepared and purified by Kanost and the Kansas State University research team.
The researchers have published their work "Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta" in the journal Insect Biochemistry and Molecular Biology.
Baylor Genetics rebrand makes debut with simplified name, targeted message - (Friday, July 22, 2016)
Baylor Miraca Genetics Laboratories, a joint venture of Baylor College of Medicine and Miraca Holdings, Inc., has rebranded as Baylor Genetics.
Baylor has provided diagnostics services for more than 35 years, and is the No. 1 funded genetics department by the National Institutes of Health. Additionally, Baylor is home to one of four U.S.-based large scale genome sequencing centers funded by the NIH, the Human Genome Sequencing Center. Baylor Genetics was launched in February 2015, building on Baylor’s genetic testing services.
Gary Huff, Baylor Genetics President and CEO, explains, “Our new identity - firmly associated with Baylor College of Medicine and the partnership with the Human Genome Sequencing Center - plays to those strengths and to the needs of today’s genetic counselors, physicians, payers and patients who require in-depth answers and support.”
› Read BCM press release
› Baylor Genetics
Study identifies a new rare genetic syndrome associated with severe infections and lung disease in infants - (Monday, July 18, 2016)
An international team of researchers has identified a new rare genetic condition – a chromosome breakage syndrome associated with severe infections and lung disease in infants. The discovery provides an explanation for this deadly pulmonary disease, possibilities to diagnose it and opportunities for developing alternate ways to treat it. The results appear in the Journal of Clinical Investigation.
Independently from each other, a team of researchers at Baylor College of Medicine and a team at the University Medical Center Utrecht in The Netherlands identified a local family with two young children with severe infections and lung disease.
In collaboration with Dr. David Wheeler, professor of molecular and human genetics at Baylor, Dr. Deborah Ritter, research scientist of pediatrics at the Human Genome Sequencing Center at Baylor and Texas Children’s Hospital, compared the sequencing data from one pair of siblings' genes with the data in newer databases containing genetic info from tens of thousands of individuals. Ritter’s work strongly suggested that the mutations of NSMCE3 gene present in the infants were responsible for the severe lung disease and infections that affected the children.
Primate brain development can help explain human developmental disorders - (Wednesday, July 13, 2016)
Scientists have elucidated the genetic programs that guide the formation and development of specific regions within the brain of rhesus monkeys. This study, the results of which appear in Nature, is important because it can help better understand how the human brain develops and identify neurodevelopmental processes involved in disorders such as autism spectrum disorders and schizophrenia.
This work was designed and directed by investigators from the Allen Institute for Brain Sciences in Seattle and involved dozens of scientists from various institutions across the world, including Baylor College of Medicine. Dr. Ed Lein, investigator at the Allen Institute, and colleagues created a high-resolution atlas of the development of rhesus monkey brain that uncovers, in fine levels of anatomical detail, how gene expression changes across time, from early gestation to young adulthood.
At the Human Genome Sequencing Center (HGSC) at Baylor, Dr. Jeffrey Rogers, associate professor of molecular and human genetics, and Dr. Richard Gibbs, professor and Wofford Cain Chair of molecular and human genetics, and director of the HGSC, contributed to this work by helping to associate observed changes in gene expression during development with significant human disease characteristics.
Tiny, Unseeing Mite Defies Expectations - (Monday, June 27, 2016)
Genome Biology and Evolution highlights the findings from sequencing the genome of Metaseiulus occidentalis, an agriculturally important predatory mite. Dr. Stephen Richards, coauthor of the highlighted paper, reflects on the intriguing results that reveal a surprising arrangement of Hox genes in this mite.
Complete genome sequenced of Elephant Endotheliotropic Herpesvirus 4 - (Friday, June 17, 2016)
The complete genome of Elephant Endotheliotropic Herpesvirus 4, known as EEHV4(Baylor), has been sequenced by researchers at Baylor College of Medicine and the Johns Hopkins School of Medicine, revealing unique characteristics of this particular species of Elephant Endotheliotropic Herpesvirus – which causes a deadly disease that affects Asian elephants in both managed care and free-range environments.
The findings appear in the current edition of mSphere from the American Society of Microbiology.
“The deadly form of the disease is predominantly associated with EEHV1, but milder disease has been caused by EEHV5 or EEHV4, of which less is known,” said Dr. Paul Ling associate professor of molecular virology and microbiology at Baylor. “Here, we have determined the complete genomic DNA sequence, completed by the Human Genome Sequencing Center at Baylor, of a species of EEHV4 obtained from a trunk wash sample collected from a surviving Asian elephant calf after suffering from EEHV4.”
- Read BCM press release
- mSphere article: Complete Genome Sequence of Elephant Endotheliotropic Herpesvirus 4, the First Example of a GC-Rich Branch Proboscivirus
- Related BCM press release: Baby elephants need their vaccinations, too
- Related BCM blog: Help us cure Elephant Endotheliotropic Herpesvirus
Largest genomic study on kidney cancer brings hope for more effective treatments - (Friday, March 4, 2016)
Understanding the complexity of cancer is a major goal of the scientific community, and for kidney cancer researchers this goal just got closer. Dr. Chad Creighton, associate professor of medicine, member of the Dan L Duncan Comprehensive Cancer Center Division of Biostatistics at Baylor College of Medicine and affiliated faculty member of the Human Genome Sequencing Center, led the study that analyzed close to 900 kidney cancers at the molecular level. The team discovered that what have historically been considered three major types of kidney cancer according to their characteristics under the microscope, could be further distinguished into nine major subtypes through molecular analyses. Each subtype was unique in terms of altered molecular pathways and patient survival. This study made use of data from The Cancer Genome Atlas.
Creighton and colleagues’ findings are important because they help pave the way toward more effective personalized medicine. Each kidney cancer has unique characteristics. As a result, different cancers may respond differently to the same treatment. Understanding what makes each kidney cancer unique can provide clues to finding targets for effective therapies. The nine subtypes discovered by Creighton and colleagues were found to have therapeutic implications.
New research into the genetic basis of mesothelioma opens doors for better treatment - (Sunday, February 28, 2016)
Malignant pleural mesothelioma is a deadly malignancy caused by asbestos that affects more than 3,000 individuals in the United States each year. The five-year survival of mesothelioma has increased to about 10 percent at five years with aggressive multimodality therapy, but a report published in Nature Genetics provides new hope for more effective treatments.
Dr. David Sugarbaker, professor of surgery and director of the Mesothelioma Treatment Center and Lung Institute at Baylor College of Medicine, co-authored this study with physician-researchers from the International Mesothelioma Program at Brigham and Women's Hospital, a program founded by Sugarbaker.
The Baylor College of Medicine Human Genome Sequencing Center currently provides genetic testing for patients seen at the Mesothelioma Treatment Center in Houston.
“The Baylor Human Genome Sequencing Center, one of the nation’s largest genomic centers, will provide a powerful platform with which we will continue to investigate and identify potentially actionable new mutations. We will continue to move aggressively to provide this analysis to our patients coming to the MTC in order to pursue more effective therapies for every patient,” said Sugarbaker.