# PROTOCOL: Illumina Barcoded Paired-End Capture Library Preparation Using Non-index Adaptors and Phusion DNA Polymerase

This protocol provides instructions for preparing DNA paired-end capture libraries for targeted sequencing by Illumina platforms. It involves using the Covaris S2 system for shearing DNA samples, using the NEBNext End Repair, A-Tailing, and Ligation Modules with non-index adaptors for DNA modification, using the 2X Phusion High-Fidelity PCR Master Mix and index PCR primers for ligation-mediated PCR (LM-PCR), as well as using Nimblegen liquid probe sets for solution-based single capture target enrichment. Quality control standard or criteria for each major procedural step is also addressed here.

The whole process described in this protocol includes the following steps: **Pre-capture Library preparation** DNA fragmentation DNA end repair 3'-end adenylation Ligation with Illumina multiplexing PE adaptor Pre-capture LM-PCR, purification and QC **NimbleGen solution capture Post-capture LM-PCR, purification and QC** 

#### Reagents Item

NEBNext End-Repair Module, Cat# E6050L, NEB

NEBNext dA-Tailing Module, Cat# E6053L, NEB

NEBNext Ligation Module, Cat# E-6056L, NEB

#### Illumina Multiplexing PE Adaptor Oligos

Note: All these primer oligos need to be HPLC purified.

Illumina multiplexing PE adaptor oligo A 5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Illumina multiplexing PE adaptor oligo B 5'-phospho-GATCGGAAGAGCACACGTCT

**Precapture LM-PCR primer IMUX-P1.0 (working concentration 50uM)** 5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC\*T

HPLC purified; \*addition of phosphothioate bond.

#### Precapture LM-PCR barcoded primers (working concentration 50uM)

Note: All these primer oligos need to be HPLC purified. Addition of phosphothioate bond before addition of the last "T" as a preventative measure against degradation in storage.

CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC1 IBC2 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC3 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC4 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC7 CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC8 CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC9 CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC10 CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC11 CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT IBC12 CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

#### Hybridization Enhancing Oligos (working concentration 1mM)

Note: All of these primer oligos need to be HPLC purified. Addition of 3'dideoxycytisine bond in the end of oligos to prevent potential nucleotide extension during post-capture PCR.

HEO Multiplexing PE 1.0 5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT/3ddC

HEO Multiplexing IBC1-12 Same nucleotide sequences with the precapture LM-PCR barcoded primer IBCn.

#### Post-capture LM-PCR primers (working concentration 50uM)

Post-capture LM-PCR 1.1 5'-AATGATACGGCGACCACCGAGA

Post-capture LM-PCR 2.1 5'-CAAGCAGAAGACGGCATACGAG

HPLC purified.

Agencourt AMPure XP beads(60ml), Cat# A63882, Beckman Coulter

Phusion High-fidelity PCR Master Mix, Cat# M0531, NEB

Cot-1 DNA, Cat #15279-011, Invitrogen

NimbleGen liquid probes (e.g.Vcrome Rebal Exome Probes)

SeqCap EZ Hyb and Wash, 24 Rxn, Cat #05634261001, Roche.

Dynabeads M-270 Streptavidin, Cat# 65305, Invitrogen

#### Consumables

| Item                                   | Source    | Catalog #  |
|----------------------------------------|-----------|------------|
| 1.2% FLASH DNA gel cassette            | Lonza/VWR | 57023      |
| Flash Gel Loading Dye (5X)             | Lonza/VWR | 50462      |
| Flash Gel Marker 100 – 4kb             | Lonza/VWR | 50473      |
| EtOH, 200 proof                        | Aaper     | Stock room |
| Clear 12-strip 0.2ml PCR tubes w/ caps | Phenix    | MPC-665    |
| Caps Only 12-Strip Clear for MPC-655   | Phenix    | MPC-660    |
| 1.7 ml microtubes (MCT-175-B)          | VWR       | 10011-720  |
| 10 ul Pipet tips                       | VWR       | 47449-868  |
| 200 ul pipet tips                      | VWR       | 22234-016  |
| 1000 ul pipet tips                     | VWR       | 16466-008  |
| Shearing microtube                     | Covaris   | 520045     |
| Nuclease-free Water                    | Qiagen    | 129114     |
| Flashgel Starter Kit                   | VWR       | 95015-612  |

#### **Equipments and Devices**

| Item                                 | Source             | Catalog #  |
|--------------------------------------|--------------------|------------|
| Covaris S2 Acoustic Shearer          | Covaris            | 600028     |
| P1000 pipette                        | Rainin             | L-1000     |
| P200 pipette                         | Rainin             | L-200      |
| P10 pipette                          | Rainin             | L-10       |
| Gel Imager PC 2000                   | BioRad             | 1708195    |
| Thermomixer                          | Eppendorf          | 0022670000 |
| Agilent Bioanalyzer 2100             | Agilent            | G2940CA    |
| Microcentrifuge 5424                 | Eppendorf          | 5424000410 |
| AB GeneAmp Thermocycler              | Applied Biophysics | N8050200   |
| Thermocycler Sample Block Module     | Applied Biophysics | 4314443    |
| Minifridge Chillers                  | Boekel/VWR         | 260009     |
| SpeedVac                             | Savant/Fisher      | DNA120-115 |
| Nutator mixer                        | VWR                | 82007-202  |
| DynaMag2 particle concentration rack | Invitrogen         | 123-21D    |

#### Before you start, make sure that you read carefully the following safety information:

- Wear lab coat, gloves, and protective goggles.
- Protect bench working area with absorbent bottom plasticized pad.
- Discard all materials in Biohazard bag. Discard all liquid in a Biohazard labeled plastic bottle that should be tightly closed and disposed of in the Biohazard bag when full.

#### References:

- Illumina Multiplexing\_SamplePrep\_Guide\_1005361\_D.
- Chapters 5, 6, 8 in NimbleGen SeqCap EZ Exome Library SR User's Guide (Version 2.2).

## Precapture Library Preparation

#### 1. DNA Fragmentation

- a) Fill a Covaris<sup>™</sup> water bath to the level of 12 in the Covaris S2 device and degas for 30-45 minutes prior to shearing your gDNA in the S2. When a microtube is placed in the tube holder, the water level should be at the base of the cap and the glass portion of the tube should be completely submerged. The water bath temperature should be between 6 °C and 8 °C.
- b) Dilute 500ng-1µg of DNA (based on Picogreen) into 100 µl of 1xTE buffer in a microcentrifuge tube.
- c) Place a Covaris<sup>™</sup> microTube (6X16mm) into the loading station. Keep the cap on the tube and use a tapered pipette tip to slowly transfer the 100 µL of DNA sample through the pre-split septa. Be careful not to introduce a bubble into the bottom of the tube. Bubbles will interfere with the acoustic field.
- d) Shear the DNA using the following Covaris<sup>™</sup> S2 System shearing conditions.
  - 1. Number of Cycles: 1 (80 seconds per cycle).
  - 2. Batch Temperatue: 6-8 °C
  - 3. Bath Temperature Limit: <15 °C
  - 4. Mode: Frequency sweeping
  - 5. Water Quality Testing Function: Off
  - 6. Duty cycle: **10%**
  - 7. Intensity: 4
  - 8. Cycles/burst: 200
  - 9. Time: **80 s**
- e) Place the Covaris<sup>™</sup> microtube into the loading station. While keeping the snapcap on, insert a pipette tip through the pre-split septa, slowly remove the sheared DNA and transfer it into a new 1.7 ml tube.
- f) Load 1 µl of each sample and 2 µl of 100 bp 4000 bp marker on a 1.2% FlashGel DNA Cassette (Lonza, Cat#: 57023). Gel running condition set as the following: Voltage 270, running time: 4 minutes. Gel imager (Bio-Rad) setting should be uniformed to the condition as described here. Condition of Bio-Rad gel imager: Filter 1 for Eth Bromide, auto expose of 0.6 s. Image transform: Higher: 3000, low: 200, Gamma: 1.00, Min: 79, Max: 4095.

**Note:** The average size should be approximately 300 bp and the majority of fragment sizes should be smaller than 500 bp (see Figure 1 gel picture for example). If majority size of sheared fragments is larger than 800 bp, re-shear the sample with 20 s increment each time for up to 2 additional cycles. The negative control should give no product.



#### Figure 1 Post-Covaris DNA size distribution on 1.2% Flash Gel. Marker lane: FlashGel DNA marker (100 bp – 4000 bp, Cat. No. 50473, Lonza).

g) Purify by adding 1.8X Agencourt AMPure XP beads and binding by rotating on a Nutator mixer for about 10 minutes at RT before placing into the magnetic particle concentrator (MPC). Remove the supernatant (and save). Wash 3 times with freshly prepared 70% ethanol. Keep the sample tube in MPC during the wash. Add ethanol slowly to avoid disturbing the bead pellet. After wash, leave the tube in MPC for 5 minutes to let the beads dry. Elute DNA in 52 µl of Buffer EB.

## 2. DNA End Repair

a) Combine and mix the following components in a 1.7 ml tube:

| Component              | Volume (μL) |
|------------------------|-------------|
| Sheared DNA            | 50.0        |
| End-repair 10× buffer* | 9.0         |

| End-repair enzyme mix* | 5.0  |
|------------------------|------|
| Nuclease-free water    | 26.0 |
| Total                  | 90.0 |

\*From NEBNext End-Repair Module (Cat. No. E6050L).

- b) Incubate the mixture at 20°C for 30 minutes at bench top cooler.
- c) Purify by adding 1.8X Agencourt AMPure XP beads and binding by rotating on a Nutator mixer for about 10 minutes at RT before placing into the magnetic particle concentrator (MPC). Remove the supernatant (and save). Wash 3 times with freshly prepared 70% ethanol. Keep the sample tube in MPC during the wash. Add ethanol slowly to avoid disturbing the bead pellet. After wash, leave the tube in MPC for 5 minutes to let the beads dry. Elute DNA in 42 µl of Buffer EB.

#### 3. 3'-end Adenylation

a) Combine and mix the following components in a 1.7 ml tube:

| Component                                                 | Volume (µL) |
|-----------------------------------------------------------|-------------|
| End-repaired DNA                                          | 40.0        |
| NEBNext <sup>™</sup> dA-Tailing Reaction<br>Buffer (10X)* | 6.0         |
| Klenow Fragment (3'-5' exo)*                              | 3.0         |
| Nuclease-free water                                       | 11.0        |
| Total                                                     | 60.0        |

\*From NEBNext dA-Tailing Module (Cat. No. E6053L).

b) Incubate the mixture at 37°C for 30 min in a calibrated thermomixer.

**4)** Purify by adding 1.8X Agencourt AMPure XP beads and binding by rotating on a Nutator mixer for about 10 minutes at RT before placing into the magnetic particle concentrator (MPC). Remove the supernatant (and save). Wash 3 times with freshly prepared 70% ethanol. Keep the sample tube in MPC during the wash. Add ethanol slowly to avoid disturbing the bead pellet. After wash, leave the tube in MPC for 5 minutes to let the beads dry. Elute DNA in 42 µl of Buffer EB.

## 4. Ligate Adaptors to the DNA

Oligonucleotide annealing:

# Illumina multiplexing PE adapter oligo A and Illumina multiplexing PE adapter oligo B should be ordered as HPLC purified.

Mix the paired oligonuclieotides at final concentration of 300uM in 1x Ligase buffer (from NEBNext Ligation Module, Cat# E6056-L) and run with the following annealing program on thermocycler: 95°C for 5 min, 80°C for 3 min, 70°C for 3 min, 60°C for 3 min, 50°C for 3 min, 40°C for 3 min, 30°C for 3 min, 20°C for 3 min and 4°C hold. Dilute 20x to obtain 15uM working concentration. Aliquot annealed adaptor into eppendorf tubes and store them in -20°C freezer.

a) Combine and mix the components below

| Component                                               | Volume (µL) |
|---------------------------------------------------------|-------------|
| Nuclease-free water                                     | 22.0        |
| Illumina Multiplexing PE Adaptors (15 µM concentration) | 5.0         |
| Quick Ligase 5X buffer*                                 | 18.0        |
| A-Tailed DNA                                            | 40.0        |
| Quick Ligase Enzyme*                                    | 5.0         |
| Total                                                   | 90.0        |

- From NEB (Cat. No. E-6056L).
- b) Incubate at room temperature for 30 minutes.
- c) Purify by adding 1.1X Agencourt AMPure XP beads and binding by rotating on a Nutator mixer for about 10 minutes at RT before placing into the magnetic particle concentrator (MPC). Remove the supernatant (and save). Wash 3 times with freshly prepared 70% ethanol. Keep the sample tube in MPC during the wash. Add ethanol slowly to avoid disturbing the bead pellet. After wash, leave the tube in MPC for 5 minutes to let the beads dry. Elute DNA in 52 µl of Buffer EB.

**Note:** (Optional) Assess yield and quality by running Agilent Bioanalyzer 2100 DNA 7500 Chip (refer to Agilent 2100 Bioanalyzer User's Guide for Molecular Assays). Make sure there is no excess free adaptor's peak in the eluted DNA sample.

## 5. Enrichment by LM-PCR Amplification

a) Prepare the following PCR mix: using only A or B column instructed as follow for Invitrogen enzyme mix or NEB phusion enzyme mix accordingly

| Component           | Volume (µL) |
|---------------------|-------------|
| DNA library         | 50.0        |
| Nuclease-free water | 6.0         |

| 2X Phusion HiFi PCR Master Mix               | 60.0  |
|----------------------------------------------|-------|
| Precapture LM-PCR primer IMUX-P1.0 (50 µM)   | 2.0   |
| Precapture LM-PCR barcoded primer IBCn (n=1- | 2.0   |
| 12) (50 µM)                                  |       |
| Total                                        | 120.0 |

- b) Vortex gently and transfer mix into a 0.2 ml PCR strip tubes. Seal the wells with caps.
- c) Place them in the ABI GeneAmp PCR System 9700/Veriti for amplification enrichment. PCR condition:
  - (1) 30" @ 98°C (2) 10" @ 98°C
  - (3) 30" @ 60°C
  - (4) 30" @ 70°C
  - (5) Repeat step (2) to (4) for a total of <u>6 cycles</u>
  - (6) 5' @ 70°C
  - (7) HOLD @ 4°C
- d) Load 1 µl of sample into one lane of a 1.2% FlashGel to check amplification.
- e) Purify by adding 1.1X Agencourt AMPure XP beads and binding by rotating on a Nutator mixer for about 10 minutes at RT before placing into the magnetic particle concentrator (MPC). Remove the supernatant (and save). Wash 3 times with freshly prepared 70% ethanol. Keep the sample tube in MPC during the wash. Add ethanol slowly to avoid disturbing the bead pellet. After wash, leave the tube in MPC for 5 minutes to let the beads dry. Elute DNA in 42 µl of Buffer EB.
- f) Run an Agilent Bioanalyzer 2100 DNA Chip 7500 to check size distribution and quantity of PCR product. Make sure there is no excess primer left in the eluted sample (See Figure 2 for example). You should have enough DNA (>1ug) for capture hybridization.



## Figure 2 Example of Illumina paired end pre-capture DNA library on Agilent Bioanalyzer 2100 DNA 7500 Chip.

# Nimblegen Solution Capture

1. Prepare for Hybridization

Remove the appropriate number of probe (4.5  $\mu$ l probe/100 ng probe per precapture library) from the -20°C freezer and allow them to thaw on ice.

- 2. Hybridization/SA beads capture/washing/elution
  - a) Add 50 µl of 1 mg/ml Cot-1 DNA and 1 µg of precapture library to a new 1.5 ml tube.
  - b) Add 0.65 µl of each 1,000 µM Hybridization Enhancing Oligos (HEOs) [HEO Multiplexing PE 1.0 and HEO Multiplexing IBCn (n=1-12), see reagent table] to the precapture library plus Cot-1 DNA.
    Note: using full-length hybridization enhancing oligos is critical for optimal capture efficiency.
  - c) Close the tube's lid and make a hole in the top of the tube's cap with an 18-20 gauge or smaller needle.

- d) Dry the precapture library/Cot-1 DNA/ HE Oligos at a DNA vacuum concentrator on high heat setting (65 °C) for about 45-60 minutes\*.
  - Do not overdry the DNA/blocker.
- e) To each dried-down precapture library/Cot-1 DNA/HE Oligos, add:
  - 7.5 µl of 2X Hybridization Buffer
  - 1.0 µl Formamide\*

\* Aliquot formamide for single usage to avoid freeze and thaw multiple times.

The tube with the precapture library/Cot-1 DNA/ HE Oligos should now contains the following components:

| Components              | Solution Capture             |
|-------------------------|------------------------------|
| Cot-1 DNA               | 50.0 µg (dried)              |
| Precapture library      | 1.0 µg (dried)               |
| 1,000 µM HE Oligos      | 0.65 μl (650 pM each, dried) |
| 2X Hybridization Buffer | 7.5 μl                       |
| Formamide               | 3.0 µl                       |
| Total                   | 10.5 µl                      |

Cover the hole in the tube's cap with a "Tough Spots" sticker.

Follow Chapters 5 and 6 in the *NimbleGen SeqCap EZ Exome Library SR User's Guide* (*Version 2.2*) to perform hybridization/capture/washing/elution steps; At step 4 in the Chapter 6, add 50ul PCR grade water to the beads.

## **Post-Capture PCR Amplification**

1. Prepare the following PCR mix in 0.2ml tubes:

| Component                       | Volume (µL) |
|---------------------------------|-------------|
| DNA library                     | 50.0        |
| 2X Phusion HiFi PCR Master Mix  | 60.0        |
| Post-capture LM-PCR 1.1 (50 µM) | 1.5         |
| Post-capture LM-PCR 2.1 (50 µM) | 1.5         |
| PCR-grade H2O                   | 7           |
| Total                           | 120.0       |

- 2. Quick spin the strip tube at Eppendorf centrifuge 5430 (2000 rpm) for 30 seconds at room temperature. Place the tube in the ABI GeneAmp PCR System 9700/Veriti machine for amplification under the following conditions:
  - (1) 30" @ 95°C
  - (2) 10" @ 95°C
  - (3) 30" @ 60°C,
  - (4) 30" @ 70°C
  - (5) Repeat steps (2)-(4) for a total of <u>12 cycles</u>
  - (6) 5' @ 70°C
  - (7) HOLD @ 4°C
- 3. After amplification is done, load 1 µl of reaction into one lane of a 1.2% FlashGel to check amplification.
- 4. Purify by adding 1.1X Agencourt AMPure XP beads and binding by rotating on a Nutator mixer for about 10 minutes at RT before placing into the magnetic particle concentrator (MPC). Remove the supernatant (and save). Wash 3 times with freshly prepared 70% ethanol. Keep the sample tube in MPC during the wash. Add ethanol slowly to avoid disturbing the bead pellet. After wash, leave the tube in MPC for 5 minutes to let the beads dry. Elute DNA in 42 µl of Buffer EB.
- 5. Run an Agilent Bioanalyzer 2100 DNA Chip 7500 to check size distribution and quantity of PCR product. Make sure there is no excess primer left in the eluted sample (see Figure 3 for example).
- 6. Perform SYBR green-based qPCR with known four loci assays to evaluate capture efficiency. Follow Chapter 11, qPCR on LM-PCR Amplified Samples, in *NimbleGen Arrays User's Guide Sequence Capture Array Delivery (version 3.2)* and Chapter 8, Measurement of Enrichment Using qPCR, in *NimbleGen SeqCap EZ Exome Library SR User's Guide (Version 2.2)* for qPCR instruction.
- 7. Dilution of Final Library for HiSeq Sequencing Run.



(end)