
 1

Atlas-SNP2 DOCUMENTATION
V1.1 April 26, 2010

Contact: Jin Yu (jy2@bcm.tmc.edu), and Fuli Yu (fyu@bcm.tmc.edu)

Human Genome Sequencing Center (HGSC) at Baylor College of Medicine (BCM)

Houston TX, USA

 2

1. Introduction

Atlas-SNP2 is aimed at detecting single nucleotide polymorphisms (SNPs) from whole-genome
resequencing data sets produced by second generation sequencing technologies. Currently,
Atlas-SNP2 supports data from 454 Life Sciences (Roche) — both GS FLX and Titanium — and
Illumina platforms.

Atlas-SNP2 is SAM/BAM friendly. It takes the standard SAM format (H. Li. 2009) alignment files
and reference sequence files in FASTA format as the inputs. It outputs putative SNP sites, the
estimated posterior SNP probabilities and various read context related information. Atlas-SNP2
has been tested on SAM/BAM files generated by the Human Genome Sequencing Center at
Baylor College of Medicine (BCM-HGSC), Wellcome Trust Sanger Institute, Washington
University Genome Sequencing Center (WUGSC), which were generated using
BLAT+cross_match (and later converted to SAM), MAQ, Mosaik respectively. We have also
tested SAM/BAM files generated by Bowtie, BWA and BFAST.

Atlas-SNP2 keeps evolving. Atlas-SNP2 was initially trained in haploid genome resequencing
data. Although Atlas-SNP2 is also applicable of detecting putative SNP sites from diploid
genome resequencing data, it lacked the ability to determine the genotypes of variant sites in
the V1.0 release (January 2010). To address this issue, we further developed a simplistic
empirical method to determine genotypes, which is included in the updated release (V1.1) as an
independent module, Atlas-SNP2-genotyper.rb. This module is applicable for relatively high
coverage sequence data.

In the draft release (V0.1), we included several modules that facilitate the data processing
pipelines (for example, the “454 raw read-BLAT/crossmatch-SAM” workflow). Their respective
documentation is included in the Appendix. The official release site for the latest version and
documentation is at the BCM-HGSC website (http://www.hgsc.bcm.tmc.edu/cascade-tech-
software_atlas_snp-ti.hgsc). You are welcome to check back for periodic updates.

2. System requirements

• Ruby 1.9.1: http://www.ruby-lang.org/en/downloads/
• UNIX-like operating system
• If needed, the external mapping tools - BLAT and cross_match - can be obtained from

http://users.soe.ucsc.edu/~kent/src/ and http://www.phrap.org respectively.

3. Using Atlas-SNP2

ruby Atlas-SNP2.rb -i [in.SAM] -r [reference.fa] -o [output]

Options:

-i FILE SAM format alignment file (Required)
-r FILE FASTA format reference sequence file (Required)
-o STR name of output result file (Required)

Choosing Platform: (Default is 454 FLX)

 3

-s Illumina
-x 454 Titanium

Setting up prior probability:
-e FLT Prior(error|c) when variant coverage number is above 2 (Default is 0.1)
-l FLT Prior(error|c) when variant coverage number is 1 or 2 for 454 data (Default is 0.9)

Setting up filters:
-m FLT maximum percentage of substitution bases allowed in the alignment (Default is 5.0)
-g FLT maximum percentage of insertion and deletion bases allowed in the alignment (Default is
5.0)
-f INT maximum number of alignments allowed to be piled up at a site (Default is 200)

Altas-SNP2 is flexible on inputting reference sequence files. Users could either use one
specified chromosome at a time or slurp in the whole genome, based on the research purpose
or the memory limitation of the computing system. It is recommended to process chromosome
by chromosome to get the results faster when run Atlas-SNP2 on huge SAM files.

Please do check the SAM files you use and pay attention to the version of the reference
genome used when produce the SAM. It is users’ responsibility to keep the version of the
reference genome that you feed into Atlas-SNP2 consistent with that indicated in SAM files.

 ruby Atlas-SNP2-genotyper.rb [Posteriori probability cutoff] [Atlas-SNP2 result file] >
[output]

Atlas-SNP2-genotyper takes Atlas-SNP2 result files as input to infer genotypes of the putative
SNP sites called by Atlas-SNP2. This program applies a posterior probability cutoff for the
conveniences of users to get a customized sub-list of putative SNPs to genotype.

Currently, Atlas-SNP2-genotyper.rb uses an empirical method to determine genotypes. Firstly it
requires both strands supporting the variants. Secondly it uses a variant read percentage cutoff
(10%) to determine homozygous or heterozygous gentoypes. Lastly, it employs a binomial test
to estimate the genotype qualities.

“genotype” and “p value of the binominal test” information are printed in the last two columns of
the output.

4. Output file format

The output of Atlas-SNP2 is a list of putative SNPs, each has detailed information described in
18 tab delimited fields. Headers are shown below:

refName<tab>coordinate<tab>refBase<tab>variantBase<tab>oriQual<tab>variantReadCov<tab>numAlte
rnativeReads<tab>totalCoverage<tab>Pr(error)j<tab>Pr(SNP)j<tab>Pr(Sj|error,c)<tab>Pr(Sj|SNP,c)<tab>
Prior(error|c)<tab>Prior(SNP|c)<tab>Pr(SNP|Sj,c)j<tab>refEnv<tab>homopolymer<tab>readsInfo

 4

Table 1. Explanations for different fields in the output.
Field Name Explanation

refName The name of the reference sequence, for example, chr12.

Coordinate The physical position of the SNP site on the reference sequence.

refBase The reference base in that SNP position.

variantBase The variant base (if there are several variants, it takes the one with largest occurrence).

oriQual The summation of the phred quality scores of all reads showing the variant base.

variantReadCov_afterFilter The number of reads after filtered that harbor the same variant base (shown in the variantBase
column).

numAlternativeReads_afterFi
lter

The total number of reads after filtered that differ from the reference sequence on the SNP site.

numRefReads_afterFilter The number of reads after filtered that harbor reference base

totalCoverage_afterFilter The total number of reads after filtered at the SNP site.

Pr(error)j The prior error probability of the locus j when conditioning on variant read coverage.

Pr(SNP)j The prior SNP probability of the locus j when conditioning on variant read coverage. This entire item
is represented by a symbol Sj, which stands for signal at locus j.

Pr(Sj|error,c) This is derived from the probability density distribution of Sj of errors at a specific variant read
coverage c.

Pr(Sj|SNP,c) This is derived from the probability density distribution of Sj of true SNPs at a specific variant read
coverage c.

Prior(error|c) Prior estimation of the substitution error rate when conditioning on variant read coverage.

Prior(SNP|c) Prior estimation of the substitution SNP rate when conditioning on variant read coverage.

Pr(SNP|Sj,c)j The Posterior SNP probability of the locus j when signal is Sj at a specific variant read coverage c.

refEnv The reference sequence of a 13-bp window centered on the SNP site.

Homopolymer The size of the longest homopolymer within a 13-bp window centered on the SNP base on the
reference sequence (legacy column, only useful for manual inspection).

readsInfo* Information about the reads that harbor the same variant base.

*The field “readsInfo” contains a list of semicolon-separated strings as shown in the following example. Each of the strings contains
the related information of the respective variant read. The following example shows the format of one of the strings in field
“readsInfo”. Table 2 gives the detailed explanation about each element within the string shown below as an example.

T(15)EIXH2IB02H9BM7(16)(235.0/272)+taacccTaaccta(0.38/1.92)(0/272)snp(0.861);

Table 2. Explanations for “readsInfo”
String name Explanation

T The variant base

15 Raw phred-like quality score

 5

EIXH2IB02H9BM7 The read name

16 The distance of the variant base to right end of the read

235.0/272 Smith-waterman score of match / The queried size on the reads

+ The read direction of strand

taacccTaaccta The variant read sequence of a 13-bp window centered on the SNP site.

0.38/1.92 %subsitutions in matching region /%indels in matching region

0/272 The status of “NQS pass” / the length of the reads

Snp This variant base is a substitution from the reference sequence to the read sequence

0.861 The prior estimated error probability of this variant base i, Pr(error)i

5. References

Shen, Y., Wan, Z., Coarfa, C., Drabek, R., Chen, L., Ostrowski, E. A., Liu, Y., Weinstock, G. M.,
Wheeler, D. A., Gibbs, R. A., and Yu, F. (2009) A SNP discovery method to assess variant
allele probability from next generation resequencing data. Genome Research.
doi:10.1101/gr.096388.109.

Li, H. (2009) Sequence Alignment/Map (SAM) format. SAMtools. Retrieved Jan 20, 2010, from
http://samtools.sourceforge.net/SAM1.pdf.

Kent, W.J. (2002) BLAT—the BLAST –like alignment tool. Genome Research, 12, 656-664.

Green, P. (1993) Cross_match. Green Group. http://www.phrap.org.

6. Change log

Current release v 1.1 (2010-04-26)

• added a heuristics-based genotyping module

• added a column of “numRefReads_afterFilter” in Atlas-SNP2 result file

• revised the header line in Atlas-SNP2 output file to be more explicit

• skipped duplicate reads masked in the BAM files when processing

• added an option for the user to setup the max number of alignments allowed to be piled
up at a particular site

• printed more running information and more detailed alignments statistics

• more robust to various alignments errors

 6

• fixed several bugs

History release V1.0 (2010-01-20)

• added Illumina Platform support

• all calculation are based on required fields of SAM to get maximum compatibility

• added CIGAR and reference sequence test code

• used pileup number to calculate TotalCoverage

• improved performance

• migrated to Ruby 1.9

• a lot of minor improvements

Draft release V0.1 (2009-12-10)

• Initial implementation

• Initial support of SAM files

 7

Appendix:

A “454 raw reads->BLAT/cross_match->SAM” workflow

1. Introduction
The whole workflow includes three steps: “Atlas-SNP-mapper”, “Atlas-SNP-splitter” and “Atlas-
SNP-SAM” (Figure S1.1)

“Atlas-SNP-mapper” is a wrapper that takes the reference genomic sequence, the NGS reads
(including sequence fasta and the quality files) as the inputs, and generates mapping results in
cross_match output format.

“Atlas-SNP-splitter” next takes the outputs and NGS reads quality fasta files (that need to be
partitioned) as its inputs. After splitting, its outputs are a series of smaller batches. This module
is designed for the resource management purpose when NGS data size is large.

 “Atlas-SNP-SAM” takes the outputs, read file and the read quality files and reference sequence
file as the inputs to generate alignment files that are in SAM format. This is only a simple file
reformatting step.

wh

Figure S1.1 The overall “454 raw reads->BLAT/Cross-match->SAM” workflow.

Reference genomic
sequence

Input NGS reads

Read anchoring/alignment
(BLAT / cross_match)

Duplicates removal

Atlas‐SNP‐mapper
Setting up mapping environment,
formatting reference and NGS
reads, Aligning NGS reads onto
reference sequence, detecting
and removing duplicates

Atlas‐SNP‐splitter
Dividing both the mapping results
and the reads qualities into smaller
pieces

Convert cross_match file to SAM format Atlas‐SNP‐SAM
Convert cross_match file to SAM

 8

Step 1: Atlas-SNP-mapper (Figure S1.2)

Atlas-SNP-mapper splits reference genomic sequences to smaller regions with the size ranging
from 10Kb to 10Mb per region. It also divides NGS read files and read quality files into smaller
pieces, ranging from 5Mb to 10Mb in size for the purpose of computational resource
management. It uses the divided pieces from both the genomic reference sequence and NGS
reads as inputs to attempt to anchor and align all the NGS sequences onto the reference
sequence. A few further steps such as “duplicates removal” can be used to remove
experimental artifacts from sequencing.

Figure S1.2 Atlas-SNP-mapper

reference genomic sequences input NGS reads

split‐fasta‐into‐batches.rb

cross_match output
(.xm)

atlas‐mapper‐format‐ref.rb

atlas‐mapper.rb

Atlas‐SNP‐mapper

 9

Step 2: Atas-SNP-splitter (Figure S1.3)

Atlas-SNP-splitter splits mapping results and respective quality files of the successfully mapped
reads into smaller batches. The program first splits the mapping result by chromosomes into
batches, and further splits the batches within each chromosome into smaller batches that
roughly have the same size. Next, two more steps are applied to categorize the successfully
mapped reads into batches by looking up the read name from the original mapping batches.

Figure S1.3 Atlas-SNP-splitter

ExtractReadNamesFromXM.rb

filterFastaByListOfReads.rb

Atlas‐SNP‐splitter
Dividing the mapping
results into smaller
pieces

Cross_match batches
splitted by chromosome

splitXMFile.rb (split within chromosome)

Cross_match batches splitted
within chromosome

name list batches

reads quality batches

 10

Step 3: crossmatch2SAM (Figure S1.4)

crossmatch2SAM.rb is designed to convert cross_match format alignment files into SAM format.

Figure S1.4 cross_match2SAM

2. Usage

2.1 Atlas-SNP-mapper

ruby atlas-mapper-format-ref.rb [-r reference] [-l length of each piece] [-f frequency Cutoff
of 11mer] [--help]

“atlas-mapper-format-ref.rb” aims to divide the reference genome into pieces to meet the
computational requirements when running “BLAT” and “cross_match” respectively. The output
will be a newly created directory named “referenceName.Environment”, under which reference
fragments, the fragment index and the relative information about the splitting are placed. Under
this directory, there are two sub directories: “ref-pieces” and “ref-divisions”. The longer divided
reference pieces (900Mb in size) are placed under the sub directory “ref-pieces”, which will
actually be used for “BLAT” to anchor reads back to respective local regions; the shorter
reference pieces (100Kb in size) are stored under the sub directory named as “ref-divisions”,
which are used to precisely compare the bases of read sequences with those on the reference
sequence using “cross_match”. This program takes two required parameters, “--reference ” (“-
r”), which introduces the reference sequence, and “--length” (“-l”) which is associated with the
size of bases each reference piece may contain.

Options:

-r FILE reference genome (required)
-l INT bases a splitted reference piece may contain. With default value 1000000 (required)
-f FLT the cutoff of 11-mer frequency deemed as over-represented in the reference so BLAT will
ignore it during seeding step, with default value 1024. 1024 is optimized for mammalian genomes.
100~200 is best for smaller or less complex genomes.
-h usage information

Cross_match (.xm)
(.SNP.list)

NGS reads
(.fa)

NGS reads quality
 (.fa.qual)

reference genomic
sequence

SAM file
(.SAM)

crossmatch2SAM.rb

 11

ruby atlas-mapper.rb [-r reference] [-q reads fasta file] [-m minScore] [-c cutoff] [-b blat]
[-c crossMatch] [-n oneOff] [-i minIdentity] [-t minMatchRatio] [-l mastLevel] [-z xmOnly]
[-a blatOnly] [-e noParse] [-s short]

“atlas-mapper.rb” takes two required parameters. The first is “--reference” (“-r”), which must be
followed by the reference sequence name. The second is “--query” (“-q”) which is associated
with the NGS reads name. By running this wrapping program, users don’t have to take efforts in
any intermediate steps, such as parsing “BLAT” results, picking the best hits and format
conversion between the two tools. Also, the program provides flexibility that allows users to
control the pathway. For example, once the option “-z” is appended, the program will only run
cross_match, the same will happen for the option “-a” for running “BLAT” only.

Options:

-r FILE reference genome (required)
-q FILE reads fasta file (required)
-m INT parameter of “crossmatch”, minimum score with default value 30
-c FLT % for the best hit cutoff with default value 0.99
-b inferring blat executive file
-c inferring crossmatch executive file
-n oneOff set to run “BLAT” with default value 0
-i INT minimum identities set when running “BLAT” with default value 90
-t FLT minimum match ratio when grouping the best hit reads generated by “BLAT” with default
value 0.85. Definition: matched bases / reads length
-l INT mask level set when running “crossmatch” with default value 20
-z causing program to run “crossmatch” only
-a causing program to run “BLAT” only
-e causing program to stop right after “BLAT” without parse out the best hit reads.
-s option for aligning short reads using “crossmatch”

Note: for more details on the parameter usage and output format, please refer to the
“cross_match” and “BLAT” documentation.

2.2 Atlas-SNP-splitter

ruby splitXMFile.rb [-x crossmatch file] [-C split by chromosome] [-n number of parts of
the input with mapping on genomic regions of the same size] [-o output file root] [-h help]

“splitXMFile.rb” is a flexible data splitting tool, designed especially for splitting the cross_match
file to meet the computational requirements for running “Atlas-SNP-core”. Besides the regular
input cross_match file introduced by the parameter “--xmFile” (“-x”), the tool provides other two
important parameters—“--splitByChrom” (“-C”) and “--numberOfParts” (“-n”). If “-C” is appended,
the cross_match file will be divided by chromosomes. “-C” is a MUST for large dataset with
multiple reference regions like the human genome. Another option “--numberOfParts” (“-n”), is
associated with a number defined by users. This option permits the program to further divide the
cross_match file into the size determined by users. We have used “-n 20” for processing the
human genome, for example. Please note that the option “-C” must be used whenever “-n” is
used.

Options:

-x FILE crossmatch file (required)
-C causing the program to split crossmatch file by chromosome

 12

-n INT number of parts that the crossmatch file will be divided within one chromosome
-o STR output file root (required)
-h usage information

ruby extractReadNamesFromXM.rb [crossmatch file] [output file]

“extractReadNamesFromXM.rb” extracts all the read names from the cross_match files and
places a list of these names into an output file. This name list is used as a small trace id
database to be queried by the program to pick the corresponding reads. The program takes two
arguments, the cross_match file name and an output file name.

 ruby filterFastaByListOfReads.rb [-f fasta file of reads] [-l file containing the list of reads
to be selected] [-o outputPrefix] [-c fasta file chunk size, in number of sequences]

“filterFastaByListOfReads.rb” is used to filter those NGS reads by choosing only the reads in the
trace ids database created by “extractReadNamesFromXM.rb”. By only considering the aligned
reads, the time and memory usage for running “atlasNQSPASS.rb” can be largely reduced. The
program takes three required parameters: “--fastaFiles” (“-f”) for the reads fasta file; “--
readListFile” (“-l”) that is followed by the “trace id database” file created by
“extractReadNamesFromXM.rb”; and “--outFile” (“-o”) that specifies the output file name. The
program will generate a .gz fasta file containing only the sequences of the aligned reads.

Options:

-f FILE reads fasta file (required)
-l STR the output file of “extractReadNamesFromXM.rb” (required)
-o STR the output file prefix (required)
-c INT fasta file chunk size (optional)
-h usage information

2.3 Atlas-SNP-SAM

ruby crossmatch2SAM.rb [-i cross_match] [-o output file] [-r read sequence] [-q read
quality file] [-f reference] [-o output]

For each aligned read, the program parses out the mismatched substitutions and indels from
cross_match results. In the meantime, the program keeps querying subsequences from both
reference sequence and raw reads file (sequence and quality file). The program takes the
cross_match file (“-i”), read sequences (“-r”), the read quality file (“-q”) and the reference
sequence file (“-f”) as input files, and then produce a SAM format mapping file as the output file
(see Table4).

Option

-i FILE cross_match file (required)
-o STR output file indicated by users (required)
-r FILE NGS read sequence file (required)
-q FILE NGS read quality file (required)
-f FILE reference sequence file (required)
-h usage information

