Methods and preliminary results of solid-genotyper

Jin Yu in Fuli’s lab

Feb 10th 2011
Workflow of solid-genotyper

1. **Pre-filter Reads:** unique mapped, non-duplicate, # of variant events (INDEL/SNP) < 3
2. **Use Logistic regression model** to filter most errors and fix reference bias
3. **Take advantage** of high coverage and homogenous error distribution after solid model, Call genotype using heuristic methods
Characterize SOLiD error model

- **Methods:**
 - Using BFAST to map SOLiD reads to a E.coli strand
 - Known few true variant sites, differences are treated as errors

- **Variables used:**
 - CM (number of color corrections occurred in this read)
 - Raw base quality score
 - Distance to 3` end
 - NQS (Neighboring Quality Score)
Logistics regression on reads level

Performance summary:

• logit predictor has better performance than any single variables
• Filter ~90% errors at the cost of ~15% coverage depth
• Preferable to mark mapping errors (results shown later)
Reference bias in raw alignments

- Cannot survive even in high coverage (average coverage \~60X in this case)
- Causes:
 - Relative short read length (50bp)
 - Special treatment on SOLiD alignment (provided by BFAST)
 - Solve the color space reads ambiguity in a way to maximize the mappablity
 - Always turn ambiguous calls to the reference base
Corrected allele distribution after solid-genotype processing

Fix the reference bias at the cost of ~16% coverage depth

- Turn the contradicted calls from reference back to N, account for <1% (GATK recalibration probably will also do it)
- Turn the base at the end of 3` end to N, account for 2%
- Base calls failed logit model, account for ~14%
Heuristics methods to call genotype

• Minimal total effective reads depth to get a confident call (currently use 8)
• Ratio of total effective read depth to call one allele (currently use 0.1)
• Minimal effective read depth to call one allele (currently use 2)
Implementation

• The prototype was implemented in Ruby
• The production version was implemented in C
• Expected performance
 – ~1 hour to call genotypes/SNP of one high coverage exome capture sequencing sample (~60X) using single CPU core