The Cancer Genome Atlas Project


Cancer is now understood to include more than 200 different diseases. In all forms of cancer, genomic changes cause disruptions within cellular pathways that result in uncontrolled cell growth. One in three people in the Western world develops cancer. One in five will die of the disease. Cancer is, therefore, the most common genetic disease. The Cancer Genome Atlas Pilot Project seeks to explore the entire spectrum of genomic change in cancer through the application of genome analysis technologies, including large-scale genome sequencing.

The Cancer Genome Atlas Project (TCGA), was initiated in 2006 to identify important genetic changes involved in lung, brain, and ovarian cancers. The project will enable new discoveries and tools that will provide the basis for new cancer therapies, diagnostics, and preventive strategies.

The overall began in 2006 with a technical demonstration project, known as the Tumor Sequencing Project (TSP), to determine the feasibility of a full-scale program to systematically explore the universe of genomic changes involved in human lung cancer.

As in the Human Genome Project, TCGA data are made available to the worldwide research community without restriction. These data will provide researchers and clinicians with an early glimpse of an unprecedented, comprehensive "atlas" of information describing the genomes of all cancers. This atlas will enable the research community to reach the long-range objective of understanding cancer at the molecular level and will help transform the bench-to-bedside research paradigm with prevention, early diagnosis, targeted treatment and cure.

All DNA specimens used in TCGA have been anonymized along with their phenotypic data so that an investigator cannot link an individual specimen with a patient identity. The coding and naming that is visible in the public databases will not allow the traces from multiple amplicons from the same DNA sample to be associated.

The goal of studying the human genome has always been to improve human health. TCGA represents another step in that direction.

Additional Resources

Learn more about The Cancer Genome Atlas Project

Related Publications

Xia Z, Donehower LA, Cooper TA, Neilson JR, Wheeler DA, Wagner EJ, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3'-UTR landscape across seven tumour types. Nat Commun. 2014 ;5:5274.

Pickering CR, Zhang J, Neskey DM, Zhao M, Jasser SA, Wang J, et al. Squamous cell carcinoma of the oral tongue in young non-smokers is genomically similar to tumors in older smokers. Clin Cancer Res. 2014 ;20(14):3842-8.

Parikh N, Hilsenbeck S, Creighton CJ, Dayaram T, Shuck R, Shinbrot E, et al. Effects of TP53 mutational status on gene expression patterns across 10 human cancer types. J Pathol. 2014 ;232(5):522-33.

Weinstein JN, Collisson EA, Mills GB, Shaw KRMills, Ozenberger BA, Ellrott K, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013 ;45(10):1113-20.

Donehower LA, Creighton CJ, Schultz N, Shinbrot E, Chang K, Gunaratne PH, et al. MLH1-silenced and non-silenced subgroups of hypermutated colorectal carcinomas have distinct mutational landscapes. J Pathol. 2013 ;229(1):99-110.

Creighton CJ, Hernandez-Herrera A, Jacobsen A, Levine DA, Mankoo P, Schultz N, et al. Integrated analyses of microRNAs demonstrate their widespread influence on gene expression in high-grade serous ovarian carcinoma. PLoS One. 2012 ;7(3):e34546.